YOMEDIA
NONE

Chứng minh đẳng thức sau với \(n \in {N^*}\): \({S_n} = \sin x + \sin 2x + \sin 3x + ... + \sin nx \) \(= \dfrac{{\sin \dfrac{{nx}}{2}.\sin \dfrac{{\left( {n + 1} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Kiểm tra với \(n = 1\) ta có: \({S_1} = \sin x = \dfrac{{\sin \dfrac{x}{2}.\sin x}}{{\sin \dfrac{x}{2}}}\) nên đúng.

    Giả sử đã có \({S_k} = \dfrac{{\sin \dfrac{{kx}}{2}.\sin \dfrac{{\left( {k + 1} \right)}}{2}x}}{{\sin \dfrac{x}{2}}}.\)

    Ta cần chứng minh \({S_{k + 1}} = \dfrac{{\sin \dfrac{{\left( {k + 1} \right)x}}{2}.\sin \dfrac{{\left( {k + 2} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}\)

    Thật vậy,

    \({S_{k + 1}} = {S_k} + \sin \left( {k + 1} \right)x\) \( = \dfrac{{\sin \dfrac{{kx}}{2}.\sin \dfrac{{\left( {k + 1} \right)}}{2}x}}{{\sin \dfrac{x}{2}}} + \sin \left( {k + 1} \right)x\) \( = \dfrac{{ - \dfrac{1}{2}\left( {\cos \dfrac{{\left( {2k + 1} \right)x}}{2} - \cos \dfrac{x}{2}} \right) - \dfrac{1}{2}\left( {\cos \dfrac{{\left( {2k + 3} \right)x}}{2} - \cos \dfrac{{\left( {2k + 1} \right)x}}{2}} \right)}}{{\sin \dfrac{x}{2}}}\)

    \( = \dfrac{{ - \dfrac{1}{2}\left( {\cos \dfrac{{\left( {2k + 3} \right)x}}{2} - \cos \dfrac{x}{2}} \right)}}{{\sin \dfrac{x}{2}}}\) \( = \dfrac{{\sin \dfrac{{\left( {k + 2} \right)x}}{2}\sin \dfrac{{\left( {k + 1} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}\)

    Vậy \({S_{k + 1}} = \dfrac{{\sin \dfrac{{\left( {k + 1} \right)x}}{2}.\sin \dfrac{{\left( {k + 2} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}\left( {dpcm} \right).\)

      bởi Hữu Trí 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON