YOMEDIA
NONE

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:

(1) \(f(x)\)không xác định tại x = 3

(2) \(f(x)\)liên tục tại x = -2

(3) \(\mathop {\lim }\limits_{x \to 2} f(x) = 2\)

A. Chỉ (1)        

B. Chỉ (1),(2)

C. Chỉ (1), (3)  

D. Tất cả đều sai

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f(x) = 1\\\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {4 - {x^2}} } \right) = 0\end{array}\)    \(\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\)   nên không tồn tại giới hạn của f(x) khi \(x \to 2\)

    \(\mathop {\lim }\limits_{x \to  - 2} f(x) = \mathop {\lim }\limits_{x \to  - 2} \left( {\sqrt {4 - {x^2}} } \right) = 0\)

    \(f( - 2) = \left( {\sqrt {4 - {x^2}} } \right) = 0\)                    \(\mathop {\lim }\limits_{x \to  - 2} f(x) = f\left( { - 2} \right)\)  suy ra  \(f(x)\)liên tục tại x = -2

    Đáp án B

      bởi Lê Tấn Vũ 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON