YOMEDIA
NONE

Xác định \(m\) để phương trình \(m{x^2} - 2\left( {m - 2} \right) + m - 3 = 0\) có đúng một nghiệm âm.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Cho phương trình \(m{x^2} - 2\left( {m - 2} \right)x + m - 3 = 0\) .

    Xét các trường hợp:

    + \(m=0\): Phương trình trở thành \(4x - 3 = 0 \Leftrightarrow x = \dfrac{3}{4}\) (loại).

    + \(m \ne 0\) :  \(\Delta ' = {\left( {m - 2} \right)^2} - m\left( {m - 3} \right) =  - m + 4\) .

    Phương trình có đúng một nghiệm âm khi xảy ra một trong các trường hợp sau

    + \({x_1} = {x_2} < 0 \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 0\\S < 0\end{array} \right. \)

    \(\Leftrightarrow \left\{ \begin{array}{l} - m + 4 = 0\\\dfrac{{2\left( {m - 2} \right)}}{m} < 0\end{array} \right.\) vô nghiệm.

    + \({x_1} < 0 < {x_2} \Leftrightarrow P < 0\)\( \Leftrightarrow \dfrac{{m - 3}}{m} < 0 \Leftrightarrow 0 < m < 3\).

    + \({x_1} < 0 = {x_2} \Leftrightarrow \left\{ \begin{array}{l}P = 0\\S < 0\end{array} \right .\)

    \(\Leftrightarrow \left\{ \begin{array}{l}\dfrac{{m - 3}}{m}=0\\\dfrac{{2\left( {m - 2} \right)}}{m} < 0\end{array} \right.\) vô nghiệm.

    Tóm lại phương trình có đúng một nghiệm âm khi \(m \in \left( {0;3} \right)\) .

      bởi Nguyễn Trung Thành 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON