YOMEDIA
NONE

Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm cố định là \(A(2;0)\), \(B(0;2)\). Cho biết quỹ tích các điểm \(M\)thỏa mãn điều kiện \(M{A^2} + M{B^2} = 12\) là một đường tròn bán kính \(R\). Tìm \(R\).

A. \(R = \sqrt 5 \)

B. \(R = 4\)

C. \(R = \sqrt 3 \)

D. \(R = 2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(M\left( {x;y} \right)\) ta có:

    \(AM = \sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 0} \right)}^2}} \) \( = \sqrt {{{\left( {x - 2} \right)}^2} + {y^2}} \)

    \( \Rightarrow M{A^2} = A{M^2} = {\left( {x - 2} \right)^2} + {y^2}\)

    \(BM = \sqrt {{{\left( {x - 0} \right)}^2} + {{\left( {y - 2} \right)}^2}} \) \( = \sqrt {{x^2} + {{\left( {y - 2} \right)}^2}} \)

    \( \Rightarrow M{B^2} = B{M^2} = {x^2} + {\left( {y - 2} \right)^2}\)

    Do đó,

    \(\begin{array}{l}M{A^2} + M{B^2} = 12\\ \Leftrightarrow {\left( {x - 2} \right)^2} + {y^2}\\ + {x^2} + {\left( {y - 2} \right)^2} = 12\\ \Leftrightarrow {x^2} - 4x + 4 + {y^2}\\ + {x^2} + {y^2} - 4y + 4 = 12\\ \Leftrightarrow 2{x^2} + 2{y^2} - 4x - 4y - 4 = 0\\ \Leftrightarrow {x^2} + {y^2} - 2x - 2y - 2 = 0\end{array}\)

    Dễ thấy, phương trình trên là phương trình đường tròn có tâm \(I\left( {1;1} \right)\) và bán kính \(R = \sqrt {{1^2} + {1^2} - \left( { - 2} \right)}  = 2\).

    Vậy tập hợp điểm M thỏa mãn \(M{A^2} + M{B^2} = 12\) là đường tròn tâm \(I\left( {1;1} \right)\) và bán kính \(R = 2\).

    Chọn D

      bởi Nguyễn Vũ Khúc 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON