YOMEDIA
NONE

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1;- 2), N(4;- 1) và P(6 ; 2) lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm toạ độ của các điểm A, B, C.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Theo tích chất đường trung bình trong một tam giác ta có: \(\overrightarrow {PN}  = \overrightarrow {BM}  = \overrightarrow {MC} \) và \(\overrightarrow {MP}  = \overrightarrow {NA} \)

    Gọi \(A\left( {{a_1},{a_2}} \right),B\left( {{b_1};{b_2}} \right),C\left( {{c_1};{c_2}} \right)\)

    Ta có: \(\overrightarrow {PN}  = \left( {2;3} \right)\),\(\overrightarrow {BM}  = \left( {1 - {b_1}; - 2 - {b_2}} \right)\), \(\overrightarrow {MC}  = \left( {{c_1} - 1;{c_2} + 2} \right)\), \(\overrightarrow {MP}  = \left( {5;4} \right)\), \(\overrightarrow {NA}  = \left( {{a_1} - 4;{a_2} + 1} \right)\)

    Có \(\overrightarrow {PN}  = \overrightarrow {BM}  \Leftrightarrow \left\{ \begin{array}{l}2 = 1 - {b_1}\\3 =  - 2 - {b_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b_1} =  - 1\\{b_2} =  - 5\end{array} \right.\) .Vậy \(B\left( { - 1; - 5} \right)\)

    Có \(\overrightarrow {PN}  = \overrightarrow {MC}  \Leftrightarrow \left\{ \begin{array}{l}2 = {c_1} - 1\\3 = {c_2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 3\\{c_2} = 1\end{array} \right.\) .Vậy \(C\left( {3;1} \right)\)

    Có \(\overrightarrow {NA}  = \overrightarrow {MP}  \Leftrightarrow \left\{ \begin{array}{l}5 = {a_1} - 4\\4 = {a_2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a_1} = 9\\{a_2} = 3\end{array} \right.\) .Vậy \(A\left( {9;3} \right)\)

      bởi Kieu Oanh 19/09/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON