ADMICRO

Trong mặt phẳng Oxy, cho hình thang vuông ABCD vuông tại A và D có AB = AD < CD

Trong mặt phẳng Oxy, cho hình thang vuông  ABCD vuông tại A và D có AB = AD < CD, điểm B(1; 2), đường thẳng BD có phương trình y = 2; biết rằng đường thẳng d: 7x - y - 25 = 0 lần lượt cắt các đoạn AD và CD theo thứ tự tại M và N sao cho BM vuông góc với BC và BN là tia phân giác của góc \(\widehat{MBC}\). Tìm tọa độ đỉnh D, biết hoành độ của D dương.

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Ta có tứ giác MBCD nội tiếp suy ra \(\widehat{BDC}=\widehat{BMC}=45^{\circ},\) nên tam giác BCM vuông cân tại B hay BN là trung trực của MC, hay \(\widehat{BMN}=\widehat{BCN}.\)

    Hạ BH vuông góc với d, H thuộc d và BE vuông góc với DC, E thuộc DC. Khi đó hai tam giác BHM = BEC suy ra BE = BH = d(B, d) = \(2\sqrt{2}\)

    Ta lại có ABED là hình vuông nên BD = 4

    D(x; 2) thuộc đường BD: y = 2, ta có phương trình \(BD^{2}=16\leftrightarrow (x-1)^{2}=16\Leftrightarrow \bigg \lbrack\begin{matrix} x=5\\x=-3 \end{matrix}\)

    Do D có hoành độ dương nên D(5; 2).

      bởi thanh hằng 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)