YOMEDIA
NONE

Tổng các giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) = x + 5y\) với \(\left( {x;y} \right)\) thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 2 \le y \le 2}\\{x + y \le 4}\\{y - x \le 4}\end{array}} \right.\) là:

A. \( - 20.\)

B. \(-4.\)

C. \(28.\)

D. \( 16.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Miền nghiệm của bất phương trình \( - 2 \le y \le 2\) là miền nằm giữa hai đường thẳng \(d:y =  - 2\) và \({d_1}:y = 2\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Miền nghiệm của bất phương trình \(x + y \le 4\) là nửa mặt phẳng bờ \({d_2}:x + y = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Miền nghiệm của bất phương trình \(y - x \le 4\) là nửa mặt phẳng bờ \({d_3}:y - x = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Miền nghiệm của hệ bất phương trình trên là hình thang cân \(ABCD\) với \(A\left( { - 2;2} \right),\) \(B\left( {2;2} \right),\) \(C\left( {6; - 2} \right),\) \(D\left( { - 6; - 2} \right).\)

    Ta có: \(F\left( { - 2;2} \right) =  - 2 + 5.2 = 8,\,\,F\left( {2;2} \right) = 2 + 5.2 = 12,\)

    \(F\left( {6; - 2} \right) = 6 + 5\left( { - 2} \right) =  - 4,\,\,F\left( { - 6; - 2} \right) =  - 6 + 5\left( { - 2} \right) =  - 16.\)

    \( \Rightarrow \) giá trị lớn nhất của \(F\) là: \(F\left( {2;2} \right) = 12,\) giá trị nhỏ nhất của \(F\) là: \(F\left( { - 6; - 2} \right) =  - 16.\)

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của \(F\) là: \(12 + \left( { - 16} \right) =  - 4.\)

    Chọn B.

      bởi Tường Vi 19/11/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON