YOMEDIA
NONE

Tìm tất cả các giá trị của m để ứng với mỗi giá trị đó phương trình: \(\left| {1 - mx} \right| = 1 + \left( {1 - 2m} \right)x + m{x^2}\). Chỉ có đúng một nghiệm.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Khi \(m = 0\), dễ thấy phương trình đã cho có một nghiệm duy nhất \(x = 0.\)

    Giả sử \(m ≠ 0\). Đặt \(t = 1 – mx\), ta có \(x = \dfrac{{1 - t}}{m}\) và ta được phương trình

    \(m\left| t \right| = {t^2} + \left( {2m - 3} \right)t + 2 - m.\)         (1)

    Hiển nhiên phương trình đã cho có một nghiệm duy nhất khi và chỉ khi (1) có một nghiệm duy nhất. Ta có phương trình (1) tương đương với

    \(\left( I \right)\left\{ {\begin{array}{*{20}{c}}{t \ge 0}\\{{t^2} + \left( {m - 3} \right)t + 2 - m = 0}\end{array}} \right.\)

    hoặc \(\left\{ {\begin{array}{*{20}{c}}{t < 0}\\{{t^2} + \left( {3m - 3} \right)t + 2 - m = 0.}\end{array}} \right.\)

    Ta xét các trường hợp sau

    ● Trường hợp \(m > 2\). Lúc này mỗi phương trình bậc hai trong hệ (I) và (II) đều có hai nghiệm trái dấu, suy ra mỗi hệ (I) và (II) đều có một nghiệm, nghĩa là phương trình (1) có hai nghiệm (trái dấu). Vậy \(m > 2\) không thỏa mãn điều kiện của bài toán.

    ● Trường hợp \(m ≤ 2\). Lúc này phương trình bậc hai trong hệ (I) có hai nghiệm \({t_1} = 1\) và \({t_2} = 2 - m.\) Do \(m ≤ 2\) nên cả hai nghiệm này đều thỏa mãn điều kiện \(t ≥ 0\). Vậy nếu \(t_1 ≠ t_2\), tức là \(m ≠ 1\) thì hệ (I) có hai nghiệm phân biệt, tức là (I) có ít nhất hai nghiệm phân biệt, không thỏa mãn yêu cầu của bài toán.

    Cuối cùng, khi \(m = 1\), dễ thấy hệ (I) có một nghiệm duy nhất \(t = 1\), hệ (II) vô nghiệm nên phương trình (1) có một nghiệm duy nhất.

    Tóm lại, các giá trị của m thỏa mãn yêu cầu đề bài là \(m \in \left\{ {0;1} \right\}.\)

      bởi Nguyễn Hoài Thương 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON