Tìm điểm M trên d cách đều 2 điểm E(0;4) và F(4;-9)

bởi thủy tiên 07/11/2018

trên đường thẳng (d) : x-y+2=0 , tìm điểm M cách đều 2 điểm E(0,4) và F(4,-9).

Câu trả lời (3)

  • Đường thẳng (d) qua E(0,4) và F(4,-9) có dạng: y = ax + b. thay tọa độ E, F vào có: 
    { 4 = a.0 + b 
    { - 9 = a.4 + b 
    => b = 4; a = -13/4 
    => pt của (d) là : 13x + 4y - 16 = 0 
    M cách đều E, F nên thuộc đường thẳng trung trực (d') của EF. Gọi I là trung điểm EF có tọa độ của I là : 
    { xi = (xE + xF)/2 = (0 + 4)/2 = 2 
    { yi = (yE + yF)/2 = (4 + (-9))/2 = -5/2 
    (d') vuông góc (d) nên Pt của (d') có dạng 4x - 13y + c' = 0 
    (d') qua I(2,-5/2) nên : 4.2 - 13.(-5/2) + c' = 0 => c' = - 61/2 
    => pt của (d') là : 8x - 26y - 61 = 0 
    M vừa thuộc delta, vừa thuộc (d') nên là nghiệm của hệ: 
    { x - y +2 = 0 
    { 8x - 26y - 61 = 0 
    Giải ra x = 41/18; y = 77/18 
    Vậy M(41/18; 77/18) là điểm cần tìm 

    Phương pháp tọa độ trong mặt phẳng

    bởi đại phong 07/11/2018
    Like (1) Báo cáo sai phạm
  • Cho mình hỏi, làm sao bạn ra đc phương trình của (d) vậy ? Và ptr (d') có tác dụng gì vậy ?

    bởi Nguyễn Hằng 16/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan