Tìm các số nguyên a,b,c sao cho abc < ab+bc+ca
tìm các số nguyên tố a,b,c sao cho abc<ab+bc+ac
Trả lời (1)
-
Giả sử : \(2\le c\le b\le a\left(1\right)\)
Từ \(abc< ab+bc+ca\) chia 2 vế cho \(abc\) ta được :
\(1< \dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{a}\left(2\right)\)
Từ \(\left(1\right)\) Ta có :
\(\dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{a}\le\dfrac{3}{c}\Rightarrow1< \dfrac{3}{c}\Rightarrow c< 3\Rightarrow c=2\)
Thây \(c=2\) vào \(\left(2\right)\) ta có :
\(\dfrac{1}{2}< \dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{2}{b}\Rightarrow b\le4\)
Vì b là số nguyên tố nên \(\Rightarrow\left\{{}\begin{matrix}b=2\\b=3\end{matrix}\right.\)
+) Với b = 2 \(\Rightarrow\dfrac{1}{2}< \dfrac{1}{a}+\dfrac{1}{2}\Rightarrow\dfrac{1}{a}>0\) với mọi a
+) Với b = 3\(\Rightarrow\dfrac{1}{2}< \dfrac{1}{a}+\dfrac{1}{3}\Rightarrow\dfrac{1}{a}>\dfrac{1}{6}\Rightarrow a< 6\)
Mà a là số nguyên tố nên \(\Rightarrow\left\{{}\begin{matrix}a=3\\a=5\end{matrix}\right.\)
Vậy \(\left(a,b,c\right)=\left(5,3,2\right);\left(3,3,2\right);\left(a,2,2\right)\) đứng với mọi số nguyên tố a
bởi Lương Linh
05/11/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



