Hãy tìm tất cả các giá trị của tham số \(m\) để bất phương trình sau \(mx + 4 > 0\) nghiệm đúng với mọi \(x\) thỏa mãn \(\left| x \right| < 8\).
A. \(m \in \left[ { - \dfrac{1}{2};\,\,0} \right) \cup \left( {0;\,\,\dfrac{1}{2}} \right]\)
B. \(m \in \left( { - \infty ;\,\,\dfrac{1}{2}} \right]\)
C. \(m \in \left[ {\dfrac{1}{2};\,\, + \infty } \right)\)
D. \(m \in \left[ { - \dfrac{1}{2};\,\,\dfrac{1}{2}} \right]\)
Trả lời (1)
-
\(\left| x \right| < 8 \Leftrightarrow - 8 < x < 8\) hay \(x \in \left( { - 8;\,\,8} \right)\).
Bất phương trình \(mx + 4 > 0\) có nghiệm đúng với \(\forall x \in \left( { - 8;\,\,8} \right)\) khi và chỉ khi đồ thị của hàm số \(y = mx + 4\) trên khoảng \(\left( { - 8;\,\,8} \right)\) nằm ở phía trên trục hoành và hai đầu mút của đoạn thẳng cũng nằm phía trên trục hoành \( \Leftrightarrow \left\{ \begin{array}{l} - 8m + 4 \ge 0\\8m + 4 \ge 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le \dfrac{1}{2}\\m \ge - \dfrac{1}{2}\end{array} \right.\)\( \Leftrightarrow - \dfrac{1}{2} \le m \le \dfrac{1}{2}\).
Vậy \(m \in \left[ { - \dfrac{1}{2};\,\,\dfrac{1}{2}} \right]\).
Chọn D.
bởi Lê Nguyễn Hạ Anh 16/07/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời