Giải phương trình x^3+6x^2+12x+6=3 căn bậc 3(3x+8)
giải : x3+6x2+12x+6=3\(\sqrt[3]{3x+8}\)
giải giúp mk nha
Trả lời (1)
-
Lời giải:
\(x^3+6x^2+12x+6=3\sqrt[3]{3x+8}\)
\(\Leftrightarrow x^3+6x^2+12x=3(\sqrt[3]{3x+8}-2)\)
\(\Leftrightarrow x(x^2+6x+12)=\frac{3.3x}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}\)
\(\Leftrightarrow x\left[(x^2+6x+12)-\frac{9}{\sqrt[3]{(3x+8)^2+2\sqrt[3]{3x+8}+4}}\right]=0\)
TH1: \(x=0\) (thỏa mãn)
TH2: Biểu thức trong ngoặc vuông bằng 0Ta thấy \(x^2+6x+12=(x+3)^2+3\geq 3\forall x\in\mathbb{R}\) (1)
\(\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4=(\sqrt[3]{3x+8}+1)^2+3\geq 3\)
\(\Rightarrow \frac{9}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}\leq 3\) (2)
Từ (1), (2) suy ra \(x^2+6x+12-\frac{9}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}\geq 0\)
Dấu bằng xảy ra khi \(x^2+6x+12=\frac{9}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}=3\Leftrightarrow \left\{\begin{matrix} (x+3)^2=0\\ (\sqrt[3]{3x+8}+1)^2=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=-3\\ x=-3\end{matrix}\right.\) (thỏa mãn)
Vậy \(x\in\left\{-3;0\right\}\)
bởi Đặng Hoàng
16/10/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



