Giải hệ phương trình x^{2}+2x-3=y+3\sqrt{x+y+3}
Giải hệ phương trình:
\(\left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x^{2}+2x-3=y+3\sqrt{x+y+3}\\6x^{2}+2xy+2(\sqrt{x}-1)(\sqrt{x}+1)=3(x^{2}-y-4)\sqrt[3]{2x^{2}+xy+3x+2} \end{matrix}\right.\; (x,y\in R)\)
Trả lời (1)
-
\(\left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x^{2}+2x-3=y+3\sqrt{x+y+3}\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (1)\\6x^{2}+2xy+2(\sqrt{x}-1)(\sqrt{x}+1)=3(x^{2}-y-4)\sqrt[3]{2x^{2}+xy+3x+2}\; \; (2) \end{matrix}\right.\)
ĐK: \(\left\{\begin{matrix} x+y+3\geq 0\\x\geq 0 \end{matrix}\right.\)
Từ (1) suy ra \(x^{2}+3x=x+y+3+3\sqrt{x+y+3}\)
Xét hàm số: \(f(t)=t^{2}+3t(t\geq 0).\) Ta có \(f'(t)=2t+3>0,\forall t\geq 0.\)
Xét hàm số đồng biến trên \([0;+\infty )\) nên \(f(x)=f(\sqrt{x+y+3})\Leftrightarrow x=\sqrt{x+y+3}\)
\(\Leftrightarrow x^{2}=x+y+3\Leftrightarrow y=x^{2}-x-3\)
Thế \(y=x^{2}-x-3\) vào PT (2) ta có
\(2x^{3}+6x^{2}-6x-2=3(x-1)\sqrt[3]{x^{3}+x^{2}+2}=0\)
\(\Leftrightarrow (x-1)(2x^{2}+6x+2-3\sqrt[3]{x^{3}+x^{2}+2})=0\)
\(\Leftrightarrow \bigg \lbrack\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x=1\\2x^{2}+6x+2-3\sqrt[3]{x^{3}+x^{2}+2}=0 \end{matrix}\)
+ Với x = 1 => y = -3
+ Với \(2x^{2}+6x+2=3\sqrt[3]{x^{3}+x^{2}+2}\)
\(\Leftrightarrow x^{3}+x^{2}+2+2x^{2}+6x+2=x^{3}+x^{2}+2+3\sqrt[3]{x^{3}+x^{2}+2}\)
\(\Leftrightarrow (x+1)^{3}+3(x+1)=x^{3}+x^{2}+2+3\sqrt[3]{x^{3}+x^{2}+2}\)
Ta có: \(f(t)=t^{3}+3t\) đồng biến trên R nên \(f(x+1)=f(\sqrt[3]{x^{3}+x^{2}+2})\)
\(\Leftrightarrow x+1=\sqrt[3]{x^{3}+x^{2}+2}\Leftrightarrow 2x^{2}+3x-1=0\Leftrightarrow \bigg \lbrack\begin{matrix} x=\frac{-3+\sqrt{11}}{4}\\x=\frac{-3-\sqrt{11}}{4}\; (l) \end{matrix}\)
Với \(x=\frac{-3+\sqrt{11}}{4}\Rightarrow y=\frac{-8-5\sqrt{11}}{8}\)
Vậy hệ phương trình có 2 nghiệm \((1;-3)\) và \((\frac{-3+\sqrt{11}}{4};\frac{-8-5\sqrt{11}}{8})\)
bởi Bo Bo
09/02/2017
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



