YOMEDIA
NONE

Giải hệ bất phương trình và biểu hiện tập nghiệm của chúng trên trục số: \(\left\{ \begin{array}{l}{x^2} - 4{ {x}} - 5 < 0\\{x^2} - 6{ {x}} + 8 > 0\\2{ {x}} - 3 \ge 0\end{array} \right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Phương trình \({x^2} - 4{ {x}} - 5 = 0\) có hai nghiệm \({x_1} =  - 1;{x_2} = 5,\) nên bất phương trình \({x^2} - 4{ {x}} - 5 < 0\) có tập nghiệm \({S_1} = \left( { - 1;5} \right).\)

    Phương trình \({x^2} - 6{ {x}} + 8 = 0\) có hai nghiệm \({x_1} = 2;{x_2} = 4,\) nên bất phương trình \({x^2} - 6{ {x}} + 8 > 0\) có tập nghiệm \({S_2} = \left( { - \infty ;2} \right) \cup \left( {4; + \infty } \right).\)

    Nghiệm của bất phương trình \(2{ {x}} - 3 \ge 0\) là \({S_3} = \left[ {\dfrac{3}{2}; + \infty } \right).\)

    Suy ra nghiệm của hệ là giao của ba tập \({S_1},{S_2},{S_3},\) tức là

    \(S = {S_1} \cap {S_2} \cap {S_3} = \left[ {\dfrac{3}{2};2} \right) \cup \left( {4;5} \right).\)

    Biểu diễn trên trục số:

      bởi Lê Nguyễn Hạ Anh 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON