YOMEDIA
NONE

Cm A=(|x_1|+1)(|x_2|+1) < = 2+căn 5 biết x_1, x_2 là nghiệm pt x^2+ax+b=0

Gọi x1,x2 là 2 nghiệm của phương trình x2+ax+b=0

với \(-1\le a,b\le1\)

chứng minh :A=(|x1|+1)(|x2​|+1) \(\text{ }\le2+\sqrt{5}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Áp dụng định lý Viete, ta có:

    \(\left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2=b\end{matrix}\right.\)

    Ta có: \(A=(|x_1|+1)(|x_2|+1)=|x_1x_2|+|x_1|+|x_2|+1\)

    Nếu \(x_1;x_2\) trái dấu, giả sử \(x_1\geq 0; x_2\leq 0\)

    \(\Rightarrow A=|b|+x_1-x_2+1\)

    Ta có: \((x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=a^2-4b\)

    Vì \(-1\leq a, b\leq 1\Rightarrow \left\{\begin{matrix} a^2\leq 1\\ 4b\geq -4\end{matrix}\right.\Rightarrow a^2-4b\leq 5\)

    \(\Rightarrow x_1-x_2\leq |x_1-x_2|\leq \sqrt{5}\) (1)

    Mặt khác, \(-1\leq b\leq 1\rightarrow |b|\leq 1(2)\)

    Từ \((1);(2)\Rightarrow A\leq 1+\sqrt{5}+1=2+\sqrt{5}\) (đpcm)

    Nếu \(x_1,x_2\) cùng dấu thì \(b\geq 0\)

    Áp dụng BĐT Bunhiacopxky: \((|x_1|+|x_2|)^2\leq (x_1^2+x_2^2)(1+1)=2[(x_1+x_2)^2-2b]=2(a^2-2b)\)

    \(\Rightarrow |x_1|+|x_2|\leq \sqrt{2(a^2-2b)}\)

    Vì \(\left\{\begin{matrix} -1\leq a\leq 1\rightarrow a^2\leq 1\\ b\geq 0\rightarrow 2b\geq 0\end{matrix}\right.\)

    \(\rightarrow |x_1|+|x_2|\leq \sqrt{2}<\sqrt{5}\Rightarrow A< 2+\sqrt{5}\)

    Từ hai th ta có đpcm

      bởi Phan Thi Cam Tu 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON