Chứng minh (x^4+y^4)/2>=(x+y)/2*(x^3+y^3)/2
(giúp mình với bài này khó quá)
Bài 1: chứng minh rằng , với mọi x, y ta có :\(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}\times\dfrac{x^3+y^3}{2}\)
Trả lời (1)
-
Trước tiên ta cần chứng minh:
\(x^4+y^4\ge x^3y+xy^3\left(\forall x;y\right)\)(1)
Ở BĐT này có nhiều cách giải nhưng em giải cách thông thường thôi
BĐT(1) tương đương \(\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\)\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\)\(\ge0\left(\forall x;y\right)\)(tự cm nhé)
\(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}.\dfrac{x^3+y^3}{2}\Leftrightarrow\dfrac{2\left(x^4+y^4\right)}{4}\ge\dfrac{(x^4+y^4)+(x^3y+xy^3)}{4}\)( luôn đúng như trên)
\(\Rightarrowđpcm\)
bởi Phạm Thu Trang 05/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời