YOMEDIA
NONE

Chứng minh (x^4+y^4)/2>=(x+y)/2*(x^3+y^3)/2

(giúp mình với bài này khó quá)

Bài 1: chứng minh rằng , với mọi x, y ta có :\(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}\times\dfrac{x^3+y^3}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Trước tiên ta cần chứng minh:

    \(x^4+y^4\ge x^3y+xy^3\left(\forall x;y\right)\)(1)

    Ở BĐT này có nhiều cách giải nhưng em giải cách thông thường thôi

    BĐT(1) tương đương \(\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)

    \(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\)\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\)\(\ge0\left(\forall x;y\right)\)(tự cm nhé)

    \(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}.\dfrac{x^3+y^3}{2}\Leftrightarrow\dfrac{2\left(x^4+y^4\right)}{4}\ge\dfrac{(x^4+y^4)+(x^3y+xy^3)}{4}\)( luôn đúng như trên)

    \(\Rightarrowđpcm\)

      bởi Phạm Thu Trang 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON