Chứng minh rằng biểu thức \(A = \sin 7x - 2\sin x\left( {\cos 4x + \cos 6x} \right)\)\(- \cos \left( {3x - \frac{\pi }{2}} \right) + 1\) không phụ thuộc vào \(x.\)
Chứng minh rằng biểu thức \(A = \sin 7x - 2\sin x\left( {\cos 4x + \cos 6x} \right)\)\(- \cos \left( {3x - \frac{\pi }{2}} \right) + 1\) không phụ thuộc vào \(x.\)
Trả lời (1)
-
\(\begin{array}{l}A = \sin 7x - 2\sin x\left( {\cos 4x + \cos 6x} \right)\\ - \cos \left( {3x - \frac{\pi }{2}} \right) + 1\\A = \sin 7x - 2\sin x\left( {2\cos 5x.\cos x} \right)\\ - \left( {\cos 3x.\cos \frac{\pi }{2} + \sin 3x.\sin \frac{\pi }{2}} \right) + 1\\A = \sin 7x - 2.\left( {2\sin x.\cos x} \right).\cos 5x\\ - \left( {0 + \sin 3x} \right) + 1\\A = \sin 7x - 2.\sin 2x.\cos 5x - \sin 3x + 1\\A = \sin 7x - \left[ {\sin 7x + \sin \left( { - 3x} \right)} \right] - \sin 3x + 1\\A = \sin 7x - \sin 7x - \sin \left( { - 3x} \right) - \sin 3x + 1\\A = \sin 3x - \sin 3x + 1\\A = 1.\end{array}\)
Vậy giá trị của biểu thức \(A\) không phụ thuộc vào biến \(x.\)
bởi Nguyễn Thị Thanh 16/07/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời