Chứng minh nếu a>=4, b>=5, c>=6 và a^2+b^2+c^2=90 thì a+b+c>=16
Chứng minh rằng nếu \(a\ge4\) , \(b\ge5\), \(c\ge6\) và \(a^2+b^2+c^2=90\)thì \(a+b+c\ge16\)
Trả lời (2)
-
Lời giải:
Đặt \((a,b,c)=(m+4,n+5,p+6)\Rightarrow m,n,p\geq 0\)
Điều kiện đb trở thành:
\(a^2+b^2+c^2=90\Leftrightarrow m^2+n^2+p^2+8m+10n+12p=13\)
Vì \(m,n,p\geq 0\) nên:
\(13=m^2+n^2+p^2+8m+10n+12p\leq (m+n+p)^2+12(m+n+p)\)
\(\Leftrightarrow (m+n+p+13)(m+n+p-1)\geq 0\)
\(\Rightarrow m+n+p\geq 1\)
\(\Rightarrow a+b+c=m+n+p+15\geq 16\)
Ta có đpcm
Dấu bằng xảy ra khi \((a,b,c)=(4,5,7)\)
bởi Phạm Ngân Hà
02/11/2018
Like (0) Báo cáo sai phạm -
wow khó đó
bởi trúc
02/11/2018
Like (0) Báo cáo sai phạm
Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



