Chứng minh 1/(a^2+b^2)+1/(b^2+c^2)+1/(c^2+a^2) < =(a^3++b^3+c^3)/2abc+3
cho a,b,c>0 và \(a^2+b^2+c^2=1\) cmr
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Trả lời (1)
-
Ta có : \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{a^2+b^2}+\dfrac{a^2+b^2+c^2}{b^2+c^2}+\dfrac{a^2+b^2+c^2}{c^2+a^2}\le\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{b^3}{2abc}+3\)( vì \(a^2+b^2+c^2=1\) )
\(\Leftrightarrow3+\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\le\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}+3\)
\(\Leftrightarrow\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\le\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
Mà theo bất đẳng thức cô-si , ta có : \(b^2+c^2\ge2bc\)\(\Rightarrow\dfrac{a^2}{b^2+c^2}\le\dfrac{a^2}{2bc}\)
Tương tự ta cũng có : \(\dfrac{b^2}{c^2+a^2}\le\dfrac{b^2}{2ca},\dfrac{c^2}{a^2+b^2}\le\dfrac{c^2}{2ab}\)
Cộng các bất đẳng thức trên lại với nhau ta được :
\(\Leftrightarrow\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\le\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
Do đó bất đẳng thức ban đầu được chứng minh .
bởi Quốc Toản 22/10/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời