Cho x, y, z là ba số thực thỏa mãn \(5^{-x}+5^{-y}+5^{-z}=1\).
Help me!
Cho x, y, z là ba số thực thỏa mãn \(5^{-x}+5^{-y}+5^{-z}=1\). Chứng minh rằng
\(\frac{25^{x}}{5^{x}+5^{y+z}}+\frac{25^{y}}{5^{y}+5^{z+x}}+\frac{25^{z}}{5^{z}+5^{x+y}}\geq \frac{5^{x}+5^{y}+5^{z}}{4}\).
Trả lời (1)
-
Đặt \(5^{x}=a,5^{y}=b,5^{z}=c\). Từ giả thiết ta có: ab + bc + ca = abc
Bất đẳng thức cần chứng minh có dạng:
\(\frac{a^{2}}{a+bc}+\frac{b^{2}}{b+ca}+\frac{c^{2}}{c+ab}\geq \frac{a+b+c}{4}\; \; \; (*)\)
\((*)\Leftrightarrow \frac{a^{3}}{a^{2}+abc}+\frac{b^{3}}{b^{2}+abc}+\frac{c^{3}}{c^{2}+abc}\geq \frac{a+b+c}{4}\)
\(\Leftrightarrow \frac{a^{3}}{(a+b)(a+c)}+\frac{b^{3}}{(b+c)(b+a)}+\frac{c^{3}}{(c+a)(c+b)}\geq \frac{a+b+c}{4}\)
Ta có \(\frac{a^{3}}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq \frac{3}{4}a\; \; \; \; (1)\) (Bất đẳng thức Cô si)
Tương tự \(\frac{b^{3}}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq \frac{3}{4}b\; \; \; \; (2)\)
\(\frac{c^{3}}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3}{4}c\; \; \; \; (3)\)
Cộng vế với vế các bất đẳng thức (1), (2), (3) suy ra điều phải chứng minh.
bởi Nguyễn Thị An
09/02/2017
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



