YOMEDIA
NONE

Cho tam giác ABC biết \(AB = 3,BC = 4,AC = 6\) , I là tâm đường tròn nội tiếp tam giác ABC .Gọi x,y,z là các số thực dương thỏa mãn \(x.\overrightarrow {IA} + y.\overrightarrow {IB} + z.\overrightarrow {IC} = \overrightarrow 0 \).Tính \(P = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Dựng hình bình hành BDIE như hình vẽ. Khi đó \(\overrightarrow {IB}  = \overrightarrow {IE}  + \overrightarrow {ID}  =  - \frac{{IE}}{{IA}}\overrightarrow {IA}  - \frac{{ID}}{{IC}}\overrightarrow {IC} \)

    Theo tính chất đường phân giác trong tam giác : \(\frac{{IE}}{{IA}} = \frac{{MB}}{{MA}} = \frac{{BC}}{{AC}},\frac{{ID}}{{IC}} = \frac{{BN}}{{NC}} = \frac{{AB}}{{AC}}\)

    Suy ra \(\overrightarrow {IB}  =  - \frac{{BC}}{{AC}}\overrightarrow {IA}  - \frac{{AB}}{{AC}}\overrightarrow {IC} \).

    Từ \(x.\overrightarrow {IA}  + y.\overrightarrow {IB}  + z.\overrightarrow {IC}  = \overrightarrow 0 \) suy ra \(\overrightarrow {IB}  =  - \frac{x}{y}.\overrightarrow {IA}  - \frac{z}{y}.\overrightarrow {IC} \).

    Do \(\overrightarrow {IA} ,\overrightarrow {IC} \) là hai véc tơ không cùng phương suy ra \(x = 4t,y = 6t,z = 3t\) với t>0 .

    Vậy \(P = \frac{x}{y} + \frac{y}{z} + \frac{z}{x} = \frac{{41}}{{12}}\).

      bởi Nguyễn Sơn Ca 31/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON