Cho tam giác ABC biết \(AB = 3,BC = 4,AC = 6\) , I là tâm đường tròn nội tiếp tam giác ABC .Gọi x,y,z là các số thực dương thỏa mãn \(x.\overrightarrow {IA} + y.\overrightarrow {IB} + z.\overrightarrow {IC} = \overrightarrow 0 \).Tính \(P = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}\)
Trả lời (1)
-
Dựng hình bình hành BDIE như hình vẽ. Khi đó \(\overrightarrow {IB} = \overrightarrow {IE} + \overrightarrow {ID} = - \frac{{IE}}{{IA}}\overrightarrow {IA} - \frac{{ID}}{{IC}}\overrightarrow {IC} \)
Theo tính chất đường phân giác trong tam giác : \(\frac{{IE}}{{IA}} = \frac{{MB}}{{MA}} = \frac{{BC}}{{AC}},\frac{{ID}}{{IC}} = \frac{{BN}}{{NC}} = \frac{{AB}}{{AC}}\)
Suy ra \(\overrightarrow {IB} = - \frac{{BC}}{{AC}}\overrightarrow {IA} - \frac{{AB}}{{AC}}\overrightarrow {IC} \).
Từ \(x.\overrightarrow {IA} + y.\overrightarrow {IB} + z.\overrightarrow {IC} = \overrightarrow 0 \) suy ra \(\overrightarrow {IB} = - \frac{x}{y}.\overrightarrow {IA} - \frac{z}{y}.\overrightarrow {IC} \).
Do \(\overrightarrow {IA} ,\overrightarrow {IC} \) là hai véc tơ không cùng phương suy ra \(x = 4t,y = 6t,z = 3t\) với t>0 .
Vậy \(P = \frac{x}{y} + \frac{y}{z} + \frac{z}{x} = \frac{{41}}{{12}}\).
bởi Nguyễn Sơn Ca 31/05/2020Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời