YOMEDIA
NONE

Bất phương trình \(\sqrt x + \sqrt {4 - x} + 2\sqrt {4x - {x^2}} \ge 2\) có tập nghiệm \(S = \left[ {a;\,\,b} \right],\,\,a < b\). Tính tổng \(P = {a^{2019}} + {b^{2019}}\).

A. \(1\)      B. \({2^{4038}}\)     C. \({2^{2019}}\)      D. \({4^{4038}}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\4 - x \ge 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \le 4\end{array} \right.\)\( \Leftrightarrow 0 \le x \le 4\)

    Đặt \(t = \sqrt x  + \sqrt {4 - x} \,\,\left( {t \ge 0} \right)\)

    \( \Rightarrow {t^2} = x + 2.\sqrt x .\sqrt {4 - x}  + 4 - x\)

    \( \Leftrightarrow {t^2} = 2\sqrt {x\left( {4 - x} \right)}  + 4\)\( = 2\sqrt {4x - {x^2}}  + 4\)

    Bất phương trình trở thành:

    \(t + {t^2} - 4 \ge 2 \Leftrightarrow {t^2} + t - 6 \ge 0 \Leftrightarrow \left[ \begin{array}{l}t \ge 2\\t \le  - 3\end{array} \right.\)

    Kết hợp với điều kiện ta được \(t \ge 2\).

    \(\begin{array}{l} \Rightarrow {t^2} \ge 4\\ \Leftrightarrow 2\sqrt {4x - {x^2}}  + 4 \ge 4\\ \Leftrightarrow 2\sqrt {4x - {x^2}}  \ge 0\\ \Leftrightarrow \sqrt {4x - {x^2}}  \ge 0\\ \Leftrightarrow 4x - {x^2} \ge 0\\ \Leftrightarrow 0 \le x \le 4\end{array}\)

    \( \Rightarrow x \in \left[ {0;\,\,4} \right]\)\( \Rightarrow a = 0;\,\,b = 4\)

    Thay \(a = 0,\,\,b = 4\) vào biểu thức \(P = {a^{2019}} + {b^{2019}}\) ta được: \(P = {0^{2019}} + {4^{2019}}\)\( = {\left( {{2^2}} \right)^{2019}} = {2^{4038}}\)

    Chọn B.

      bởi Anh Trần 16/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON