YOMEDIA
NONE

Bài 59 trang 124 sách bài tập Đại số 10

Bài 59 (SBT trang 124)

Chứng minh rằng :

                      \(\left(x^2-y^2\right)^2\ge4xy\left(x-y\right)^2;\forall x,y\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét vế trái: \(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\)
    Giả sử \(\left(x-y\right)^2\left(x+y\right)^2\ge4xy\left(x-y\right)^2\)
    \(\Leftrightarrow\left(x-y\right)^2\left[\left(x+y\right)^2-4xy\right]\ge0\)
    \(\Leftrightarrow\left(x-y\right)^2\left(x-y\right)^2\ge0\)
    \(\Leftrightarrow\left(x-y\right)^4\ge0\) (luôn đúng với mọi x, y).
    Suy ra điều phải chứng minh.

      bởi Phương Phương 22/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON