YOMEDIA
NONE
  • Câu hỏi:

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình \({d_1}:5x - 6y - 4 = 0\), \({d_2}:x + 2y - 4 = 0\) và \({d_3}:mx - \left( {2m - 1} \right)y + 9m - 19 = 0\) (m là tham số). Tìm tất cả các giá trị của tham số m để ba đường thẳng đã cho cùng đi qua một điểm.

    • A. m = 1
    • B. m = -1
    • C. m = -2
    • D. m = 2

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi I  là giao điểm của \({d_1},\,\,{d_2}\)

    \( \Rightarrow \) Tọa độ I  là nghiệm của hệ phương trình:  \(\left\{ \begin{array}{l}5x - 6y - 4 = 0\\x + 2y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right. \)

    \(\Rightarrow I\left( {2;1} \right)\)

    Để ba đường thẳng đã cho cùng đi qua một điểm \( \Leftrightarrow I \in {d_3}\)

    \( \Leftrightarrow 2m - \left( {2m - 1} \right) + 9m - 19 = 0\) \( \Leftrightarrow 9m - 18 = 0 \Leftrightarrow m = 2\)

    ATNETWORK

Mã câu hỏi: 247857

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON