YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu giá trị của tham số m để hệ bất phương trình \(\left\{ \begin{array}{l}x - 3 \ge m\\\left( {m - 2} \right)x \le 3m - 3\end{array} \right.\) có nghiệm duy nhất ?

    • A. 2
    • B. 1
    • C. 0
    • D. Đáp án khác

    Lời giải tham khảo:

    Đáp án đúng: B

    +) Với \(m = 2\) HPT trở thành : \(\left\{ \begin{array}{l}x - 3 \ge 2\\0 \le 3\end{array} \right. \Leftrightarrow x \ge 5\) không có nghiệm duy nhất.

    +) Với \(m > 2\) ta có : \(\left\{ \begin{array}{l}x - 3 \ge m\\\left( {m - 2} \right)x \le 3m - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge m + 3\\x \le \frac{{3m - 3}}{{m - 2}}\end{array} \right.\)

    HPT có nghiệm duy nhất \( \Leftrightarrow m + 3 = \frac{{3m - 3}}{{m - 2}}\)

    \(\begin{array}{l} \Leftrightarrow {m^2} + m - 6 = 3m - 3\\ \Leftrightarrow {m^2} - 2m - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 3\,\,\,\left( {tm} \right)\\m =  - 1\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

    +) Với \(m < 2\) ta có : \(\left\{ \begin{array}{l}x - 3 \ge m\\\left( {m - 2} \right)x \le 3m - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge m + 3\\x \ge \frac{{3m - 3}}{{m - 2}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge m + 3\\x \ge \frac{{3m - 3}}{{m - 2}}\end{array} \right.\)

    \( \Rightarrow \) HPT không có nghiệm duy nhất. 

    Vậy có 1 giá trị của m thỏa mãn yêu cầu đề bài.

    ATNETWORK

Mã câu hỏi: 247850

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON