YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( m;0;0 \right), B\left( 0;m-1;0 \right); C\left( 0;0;m+4 \right)\) thỏa mãn BC=AD, CA=BD và AB=CD. Giá trị nhỏ nhất của bán kính mặt cầu ngoai tiếp tứ diện ABCD bằng

    • A. \(\frac{{\sqrt 7 }}{2}\)
    • B. \(\frac{{\sqrt {14} }}{2}\)
    • C. \(\sqrt 7 \)
    • D. \(\sqrt {14} \)

    Lời giải tham khảo:

    Đáp án đúng: B

    Đặt BC=a; CA=b; AB=c.

    Gọi M, N lần lượt là trrung điểm của AB và CD.

    Theo giả thiết ta có tam giác \(\Delta ABC=\Delta CDA\left( c.c.c \right)\Rightarrow CM=DM\) hay tam giác CMD cân tại M \(\Rightarrow MN\bot CD\)

    Chứng minh tương tự ta cũng có \(MN\bot AB\)

    Gọi I là trung điểm của MN thì IA=IB và IC=ID.

    Mặt khác ta lại có AB=CD nên \(\Delta BMI=\Delta CNI\Rightarrow IB=IC\) hay I là tâm mặt cầu ngoại tiếp tứ diện ABCD.

    Ta có \(I{{A}^{2}}=I{{M}^{2}}+A{{M}^{2}}=\frac{M{{N}^{2}}}{4}+\frac{A{{B}^{2}}}{4}=\frac{M{{N}^{2}}+{{c}^{2}}}{4}\)

    Mặt khác CM là đường trung tuyến của tam giác ABC nên \(C{{M}^{2}}=\frac{2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}}}{4}\)

    \(\Rightarrow M{{N}^{2}}=C{{I}^{2}}-C{{N}^{2}}=\frac{2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}}}{4}-\frac{{{c}^{2}}}{4}=\frac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2}\).

    Vậy \(I{{A}^{2}}=\frac{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}{8}\).

    Với \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2{{m}^{2}}+2{{\left( m-1 \right)}^{2}}+2{{\left( m+4 \right)}^{2}}=6{{\left( m+1 \right)}^{2}}+28\)

    Vậy \(I{{A}^{2}}=\frac{6{{\left( m+1 \right)}^{2}}+28}{8}\ge \frac{7}{2}\Rightarrow I{{A}_{\min }}=\sqrt{\frac{7}{2}}=\frac{\sqrt{14}}{2}\).

    ADSENSE

Mã câu hỏi: 271711

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF