-
Câu hỏi:
Trong các mệnh đề sau, hãy chọn mệnh đề đúng?
- A. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
- B. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó.
- C. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia.
- D. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó.
Lời giải tham khảo:
Đáp án đúng: A
Đáp án A: đúng.
Đáp án B: Sai, do phát biểu này thiếu yếu tố cắt nhau.
Đáp án C: Sai, vì mặt phẳng đó chưa chắc đã tồn tại.
Đáp án D: Sai, do phát biểu này thiếu yếu tố vuông góc.
Đáp án A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong các mệnh đề sau, hãy chọn mệnh đề đúng?
- Cho hình lăng trụ tam giác \(ABC.{A}'{B}'{C}'\) có các cạnh bên hợp với đáy những góc bằng \(60{}^\circ \), đáy \(ABC\) là tam giác đều và \({A}'\) cách đều \(A\), \(B\), \(C\). Tính k/c giữa 2 đáy của hình lăng trụ?
- Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) có cạnh bằng \(1\) (đvdt). K/c giữa \(AA'\) và \(BD'\) bằng?
- Trong các mệnh đề sau, hãy chọn mệnh đề sai?
- Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). K/c từ \(A\) đến \(\left( BCD \right)\) bằng?
- Cho các khẳng định sau: Trong các khẳng định đã cho có bao nhiêu khẳng định đúng?
- Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình chữ nhật với \(AC=a\sqrt{5}\)và \(BC=a\sqrt{2}\). Tính k/c giữa \(SD\) và \(BC\)?
- Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình thang vuông cạnh \(a\). Gọi \(I\) và \(J\) lần lượt là trung điểm của \(AB\) và \(CD\). Tính k/c giữa đường thẳng \(IJ\) và \(\left( SAD \right)\)?
- Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) có cạnh bằng \(a\). K/c giữa \(BB'\) và \(AC\) bằng?
- Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). K/c giữa 2 cạnh đối \(AB\) và \(CD\) là đoạn nào?