-
Câu hỏi:
Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 2m + 5 > 0\) nghiệm đúng \(\forall x \in R\).
- A. \(m > 1\)
- B. \(m < - 3\)
- C. \( - 3 < m < 2\)
- D. \(m > 2\)
Lời giải tham khảo:
Đáp án đúng: D
Để bất phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 2m + 5 > 0\) nghiệm đúng \(\forall x \in R\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 > 0\\{\left( {m + 1} \right)^2} - \left( {m - 1} \right)\left( {2m + 5} \right) < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 1\\ - {m^2} - m + 6 < 0\,\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\left[ \begin{array}{l}m < - 3\\m > 2\end{array} \right.\end{array} \right. \Leftrightarrow m > 2\,.\end{array}\)
Vậy \(m > 2\) thỏa mãn bài toán.
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong mặt phẳng với hệ tọa độ \(Oxy\), đường tròn tâm \(I\left( {1;3} \right)\) tiếp xúc với đường thẳng \(\Delta :3x + 4y = 0\) thì có bán kính bằng bao nhiêu ?
- Trong mặt phẳng với hệ tọa độ \(Oxy\), lập phương trình đường tròn \((C)\) có tâm \(I\left( {2; - 3} \right)\)và có bán kính \(R = 4\).
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \((C):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Khẳng định nào đúng ?
- Cho biết \(\cos \alpha = \frac{1}{3}\). Tính giá trị của \(\cos 2\alpha \).
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(d:x - 5y + 3 = 0\). Vectơ có tọa độ nào sau đây là vectơ pháp tuyến của đường thẳng \(d\)?
- Biết \(\tan \alpha = \frac{1}{2}\). Hãy tính \(\cot \alpha \).
- Trong mặt phẳng với hệ tọa độ \(Oxy\), điểm \(I\left( {1; - 3} \right)\) là tâm của đường tròn có phương trình nào dưới đây?
- Cho \(\sin a = \frac{1}{{\sqrt 2 }},\cos a = \frac{{\sqrt 2 }}{2}\). Hãy tính giá trị của \(\sin 2a\).
- Cho đường tròn \((O)\) đường kính bằng \(10\,{\rm{cm}}\). Tính độ dài cung có số đo \(\frac{{7\pi }}{{12}}.\)
- Cho hàm số \(f\left( x \right) = a{x^2} + bx + c\) có đồ thị như hình bên. Tập nghiệm của bất phương trình \(f\left( x \right) \le 0\) là
- Chọn khẳng định sai trong các khẳng định dưới đây.
- Trong mặt phẳng với hệ tọa độ \(Oxy\), đường thẳng \(\Delta :3x - 2y - 7 = 0\) cắt đường thẳng nào sau đây?
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(d:x + 2y - 1 = 0.\) Khẳng định nào sau đây sai ?
- Cho hàm số \(y = f\left( x \right)\) có đồ thị như bình bên. Bảng xét dấu của \(f\left( x \right)\) là bảng nào sau đây ?
- Cho biết \({\rm{cos }}x = \frac{{\rm{2}}}{{\sqrt {\rm{5}} }}\,\,\,\left( { - \frac{\pi }{2} < x < 0} \right)\) thì \(\sin x\) có giá trị bằng&
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 3t\\y = 5 - 4t\end{array} \right.\). Điểm nào sau đây không thuộc \(d\)?
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \(({C_m}):{x^2} + {y^2} - 2mx - 4my - 5 = 0\) (\(m\) là tham số). Biết đường tròn \(({C_m})\) có bán kính bằng 5. Khi đó tập hợp tất cả các giá trị của \(m\) là
- Trên đường tròn lượng giác, gọi \(M\) là điểm biểu diễn của cung lượng giác sau \(\alpha = - {15^0}.
- Cho biết hệ thức nào sau đây là sai?
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hình vuông \(ABCD\) biết \(A\left( { - 1;3} \right),C\left( {1; - 1} \right)\). Lập phương trình đường tròn ngoại tiếp hình vuông \(ABCD\).
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho điểm \(A\left( {1; - 2} \right)\) và \(B\left( {0;3} \right)\). Phương trình nào sau đây là một phương trình tham số của đường thẳng \(AB\)?
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 20 = 0\). Viết phương trình tiếp tuyến của đường tròn \((C)\) tại điểm \(A\left( { - 2;2} \right)\).
- Tìm tổng tất cả các giá trị của tham số \(m\) để \({\Delta _1}\) vuông góc với \({\Delta _2}\).
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {1;0} \right),\)\(B\left( {2; - 1} \right),\)\(C\left( {3;5} \right)\). Phương trình của đường cao kẻ từ \(A\) của tam giác \(ABC\) là
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(\Delta :3x + y + 6 = 0\) và điểm \(M\left( {1;3} \right).\) Viết phương trình đường thẳng \(d\) biết \(d\) đi qua \(M\) và song song đường thẳng \(\Delta \).
- Trên đường tròn lượng giác (gốc \(A\)), cung lượng giác có số đo là \(\alpha = - {90^0} + k{360^0}\,\,\,(k \in Z)\) có
- Cho biểu thức \(P = 3{\sin ^2}x + 2\sin x.\cos x - {\cos ^2}x{\rm{ }}\left( {x \ne \frac{\pi }{2} + k\pi ,k \in Z} \right)\), nếu đặt \(t = \frac{{\sin x}}{{\cos x}}\) thì biểu thức \(P\) được viết theo \(t\) là biểu thức nào dưới đây ?
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai điểm \(A\left( {5; - 3} \right)\) và \(B\left( {8;2} \right)\). Viết phương trình đường thẳng \(\Delta \) đi qua \(A\) và có khoảng cách từ \(B\) đến \(\Delta \) lớn nhất.
- Trên đường tròn lượng giác gốc \(A\), số đo của cung lượng giác nào sau đây có các điểm biểu diễn là cả bốn điểm \(A,{\rm{ }}A',{\rm{ }}B,{\rm{ }}B'\) như hình bên ?
- Hỏi muốn lợi nhuận bán vé tối thiểu là 50 triệu đồng thì giá tiền mỗi vé là bao nhiêu?
- iết phương trình của đường thẳng \(d\) biết \(d\) vuông góc với đường thẳng \(\Delta :2x - y + 1 = 0\) và cắt đường tròn \(\left( C \right):{x^2} + {y^2} + 2x - 4y - 4 = 0\)
- Miền biểu diễn nghiệm của hệ bất phương trình sau \(\left\{ \begin{array}{l}y \ge - 2\\x \ge 2\\2x + y \le 8\end{array} \right.
- Phần tô đậm trong hình vẽ sau đây (có chứa biên), biểu diễn tập nghiệm của bất phương trình nào trong các bất ph
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng đi qua hai điểm \(A\left( {1;2} \right)\), \(B\left( {4;6} \right)\), tìm tọa độ điểm \(M\) trên trục \(Oy\) sao cho diện tích \(\Delta MAB\) bằng 1.
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho điểm \(M\left( {1;2} \right)\) và đường thẳng \(d:2x + y - 5 = 0\). Toạ độ của điểm đối xứng với điểm \(M\) qua \(d\) là
- Rút gọn biểu thức sau \(A = \frac{{\sin 2\alpha + \sin \alpha }}{{1 + \cos 2\alpha + \cos \alpha }}\) (với \(\alpha \) làm cho biể
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho các điểm \(A,B,C,M,N,P\) như hình vẽ. Điểm nào dưới đây thuộc đường tròn ngoại tiếp tam giác \(ABC\)?
- Cho hai tam giác vuông \(OAB\) và \(OCD\) như hình vẽ. Biết \(OB = CD = a\), \(AB = OD = b.\) Tính \(\cos \angle AOC\) theo \(a\) và \(b\).
- Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 2m + 5 > 0\) nghiệm đúng \(\forall x \in R\).
- Cho phương trình \({x^2} - 2(m - 2)x + 4 - 7m = 0\) (\(m\) là tham số). Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn \(x_1^2 + \,x_2^2 = 10\).