YOMEDIA
NONE
  • Câu hỏi:

    Cho hai tam giác vuông \(OAB\) và \(OCD\) như hình vẽ. Biết \(OB = CD = a\), \(AB = OD = b.\) Tính \(\cos \angle AOC\) theo \(a\) và \(b\). 

    • A. \(\frac{{2ab}}{{{a^2} + {b^2}}}\).
    • B. \(\frac{{{b^2} - {a^2}}}{{{a^2} + {b^2}}}\). 
    • C. \(1\). 
    • D. \(\frac{{{a^2} - {b^2}}}{{{a^2} + {b^2}}}\). 

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét \(\Delta OAB\) và \(\Delta COD\) có:

    \(\begin{array}{l}\angle OBA = \angle CDO = {90^o}\,\,\,\,\left( {gt} \right)\\OB = CD\,\,\,\left( {gt} \right)\\AB = OD\,\,\,\,\left( {gt} \right)\\ \Rightarrow \Delta OAB = \Delta COD\,\,\,\left( {c - g - c} \right)\end{array}\)

    \( \Rightarrow OA = OC\) (2 cạnh tương ứng)

    \( \Rightarrow OA.OC = O{A^2} = O{B^2} + A{B^2} = {a^2} + {b^2}\) (Pitago)

    \(\begin{array}{l}\cos \angle AOC = \cos \left( {\angle AOB - \angle COD} \right) = \cos \angle AOB\cos \angle COD + \sin \angle AOB\sin \angle COD\\ = \frac{{OB}}{{OA}}.\frac{{OD}}{{OC}} + \frac{{AB}}{{OA}}.\frac{{CD}}{{OC}} = \frac{{OB.OD + AB.CD}}{{OA.OC}} = \frac{{ab + ab}}{{{a^2} + {b^2}}} = \frac{{2ab}}{{{a^2} + {b^2}}}.\end{array}\)

    Chọn A.

    ATNETWORK

Mã câu hỏi: 369683

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON