YOMEDIA
NONE
  • Câu hỏi:

    Phương trình \(2{x^2} - 6x + 4 = 3\sqrt {{x^3} + 8} \) có hai nghiệm dạng \(x = a \pm b\sqrt {13} \) với \(a,b \in \mathbb{N}\). Tính \({a^2} - b\)?

    • A. 0
    • B. 1
    • C. 8
    • D. -1

    Lời giải tham khảo:

    Đáp án đúng: C

    Điều kiện: \({x^3} + 8 \ge 0 \Leftrightarrow {x^3} \ge {( - 2)^3} \Leftrightarrow x \ge - 2\).

    Phương trình tương đương:

    \(2\left( {{x^2} - 2x + 4} \right) - 2(x + 2) - 3\sqrt {(x + 2)\left( {{x^2} - 2x + 4} \right)} = 0.\)

    Chia hai vế phương trình cho \({x^2} - 2x + 4\) (với \({x^2} - 2x + 4 = {(x - 1)^2} + 3 \ne 0,\forall x \in \mathbb{R}\)), ta được: \(2 - 2\left( {\frac{{x + 2}}{{{x^2} - 2x + 4}}} \right) - 3\sqrt {\frac{{x + 2}}{{{x^2} - 2x + 4}}} = 0\).

    Đặt \(t = \sqrt {\frac{{x + 2}}{{{x^2} - 2x + 4}}} (t \ge 0)\).

    Phương trình trở thành: \(2 - 2{t^2} - 3t = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = \frac{1}{2}{\rm{ (n) }}}\\{t = - 2{\rm{ (l) }}}\end{array}} \right.\).

    Với \(t = \frac{1}{2}\) thì \(\sqrt {\frac{{x + 2}}{{{x^2} - 2x + 4}}} = \frac{1}{2} \Leftrightarrow 4(x + 2) = {x^2} - 2x + 4 \Leftrightarrow x = 3 \pm \sqrt {13} \) (nhận).

    Do vậy: \(a = 3,b = 1 \Rightarrow {a^2} - b = 8\).

    Đáp án C.

    ATNETWORK

Mã câu hỏi: 469379

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON