-
Câu hỏi:
Một hình hộp chữ nhật có đường chéo bằng 3 dm, chiều ao 2 dm, diện tích xung quanh bằng \(12 dm^2\). Tính thể tích của hình hộp chữ nhật.
- A. 8 (dm3)
- B. 2 (dm3)
- C. 4 (dm3)
- D. 12 (dm3)
Lời giải tham khảo:
Đáp án đúng: C
Hình hộp chữ nhật ABCD. A'B'C'D' có AC' = 3dm; CC' = 2dm.
Xét tam giác ACC' vuông tại C, theo định lý Pytago ta có AC2 = C'A2 – C'C2 = 32 – 22 = 5
Vì diện tích xung quang là 12 dm2 nên chu vi đáy bằng 12 : 2 = 6 (dm)
Đặt AD = a, DC = b. Vì chu vi đáy là 6 dm ⇒ 2 (a + b) = 6 ⇔ a + b = 3 (1) và a2 + b2 = AC2 = 5 (2) (định lý Pytago cho tam giác vuông ADC)
Từ đó (1) và (2) suy ra a2 + (3 – a)2 = 5
Rút gọn được a2 – 3a + 2 = 0 hay (a – 1)(a – 2) = 0
Giả sử a ≥ b thì ta tìm được a = 2 suy ra b = 1.
Thể tích của hình hộp chữ nhật bằng 2.1.2 = 4 (dm3).
Đáp án cần chọn là: C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho biết câu nào không đúng về các cạnh bên của hình lăng trụ đứng
- Cho biết hình lăng trụ đứng ABCD. ABCD có đáy ABCD là hình thang vuông (\(\widehat A = \widehat B = {90^0}\)).
- Cho hình lăng trụ đứng ABC. A'B'C' (hình vẽ) có \(\widehat {BAC} = {90^0}\), AB = 6 cm, AC = 8 cm, AA' = 15 cm. Diện tích toàn phần của hình lăng trụ đứng bằng
- Cho biết hình lăng trụ tam giác đều ABC. ABC có chiều cao bằng 2 cm, \(\widehat {BAB} = {45^0}\).
- Một hình hộp chữ nhật có diện tích xung quanh bằng \(120 cm^2\), chiều cao bằng 6cm.
- Một hình hộp chữ nhật có đường chéo bằng 3 dm, chiều cao là 2 dm, diện tích xung quanh bằng \(12 dm^2\).
- Hãy tính thể tích của hình lăng trụ đứng có chiều cao 20 cm, đáy là một tam giác vuông có các cạnh góc vuông bằng 8 cm và 10 cm:
- Số nào trong các số sau đây là thể tích của hình lăng trụ đứng đó?
- Cho biết một hình lăng trụ đứng có diện tích đáy là S, chiều cao là h.
- Hãy tính thể tích của hình lăng trụ đứng sau: