-
Câu hỏi:
Giá trị nhỏ nhất Fmin của biểu thức F(x;y) = 4x + 3y trên miền xác định bởi hệ \(\left\{ \begin{array}{l} 0 \le x \le 10\\ 0 \le y \le 9\\ 2x + y \ge 14\\ 2x + 5y \ge 30 \end{array} \right.\)
- A. Fmin=23.
- B. Fmin=26.
- C. Fmin=32.
- D. Fmin=67.
Lời giải tham khảo:
Đáp án đúng: C
Trong mặt phẳng tọa độ Oxy,vẽ các đường thẳng
\( {d_1}:2x + y - 14 = 0,{\mkern 1mu} {\mkern 1mu} {d_2}:2x + 5y - 30 = 0,{\rm{\Delta }}:y = 9,{\rm{\Delta '}}:x = 10.\)
Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng (tứ giác ABCD kể cả biên) tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ là \( A\left( {5;4} \right),B\left( {\frac{5}{2};9} \right),C\left( {10;9} \right),D\left( {10;2} \right).\)
Ta có \(\left\{ \begin{array}{l} F(5;4) = 32\\ F(\frac{5}{2};9) = 37\\ F(10;9) = 67\\ F(10;2) = 46 \end{array} \right. \to {F_{\min }} = 32\)
Chọn đáp án C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hệ bất phương trình \(\left\{ \begin{array}{l} 2{\rm{x}} - \frac{3}{2}y \ge 1\\ 4{\rm{x}} - 3y \le 2 \end{array} \right.\) có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?
- Cho hệ ⎧ ⎨ ⎩ 2 x + 3 y < 5 ( 1 ) x + 3 2 y < 5 ( 2 ) 2x+3y
- Phần không gạch chéo ở hình cho sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D ?
- Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}} {2x - 1 \le 0}\\ { - 3x + 5 \le 0} \end{array}} \right.\) chứa điểm nào sau đây?
- Giá trị nhỏ nhất Fmin của biểu thức F(x;y) = 4x + 3y trên miền xác định bởi hệ \(\left\{ \begin{array}{l} 0 \le x \le 10\\ 0 \le y \le 9\\ 2x + y \ge 14\\ 2x + 5y \ge 30 \end{array} \right.\)
- Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \(\left\{ \begin{array}{l} y - 2x \le 2\\ 2y - x \ge 4\\ x + y \le 5 \end{array} \right.\)
- Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
- Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y < - 3\\2y \ge - 4\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ đã cho?
- Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
- Miền nghiệm của hệ bất phương trình \(\left\{\begin{array}{l} x-2 y-2 \end{array}\right.\) không chứa điểm nào sau đây?