YOMEDIA
NONE
  • Câu hỏi:

    Cho đường tròn tâm \(O\) bán kính \(25cm.\) Hai dây \(AB, CD\) song song với nhau và có độ dài theo thứ tự bằng \(40cm,\) \(48cm.\) Tính khoảng cách giữa hai dây ấy. 

    • A. 21cm hoặc 8cm
    • B. 22cm hoặc 8cm
    • C. 22cm hoặc 5cm
    • D. 22cm hoặc 7cm

    Lời giải tham khảo:

    Đáp án đúng: B

    Kẻ \(OK \bot CD,\) \(OH \bot  AB.\) 

    Xét (O) có \(OK \bot CD\) mà OK là 1 phần đường kính và CD là dây cung \(\Rightarrow CK = DK = \displaystyle {1 \over 2}CD\) (đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy)

    Xét (O) có \(OH \bot  AB\) mà OH là 1 phần đường kính và CD là dây cung \(\Rightarrow AH = BH = \displaystyle {1 \over 2}AB\) (đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy)

    Vì \(AB // CD\) nên \(H, O, K\) thẳng hàng. 

    Áp dụng định lí Pi-ta-go vào tam giác vuông \(OBH,\) ta có:

    \(OB^2 = BH^2 + OH^2\)

    Suy ra:  \(OH^2 = OB^2 - BH^2 \)\(= 25^2 - 20^2 = 225\)

    \(\Rightarrow OH = 15 (cm)\)

    Áp dụng định lí Pi-ta-go vào tam giác vuông \(ODK,\) ta có:

    \(O{D^2} = D{K^2} + O{D^2}\)

    Suy ra: \(O{K^2} = O{D^2} - D{K^2}\)\( = {25^2} - {24^2} = 49\)

    \(\Rightarrow OK = 7 (cm)\)

    * Trường hợp \(O\) nằm giữa hai dây \(AB\) và \(CD\):

    \(HK  = OH + OK = 15 + 7 =22 (cm)\)

    * Trường hợp \(O\) nằm ngoài hai dây \(AB\) và \(CD\):

    \(HK = OH – OK = 15 – 7 = 8 (cm).\)

    ATNETWORK

Mã câu hỏi: 239709

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON