-
Câu hỏi:
Chọn định lý: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông” (hình vẽ). Giả thiết, kết luận của định lý là:
- A. Giả thiết: Cho góc bẹt AOB và tia OD, OE là phân giác góc BOD, OF là phân giác góc AOD. Kết luận: OE ⊥ OF
- B. Giả thiết: Cho góc bẹt AOB và tia OD, OE là phân giác góc BOF, OF là phân giác góc AOD. Kết luận: OE ⊥ OA
- C. Giả thiết: Cho góc bẹt AOB và tia OD, OE là phân giác góc BOD, OF là phân giác góc AOE. Kết luận: OE ⊥ OF
- D. Giả thiết: Cho góc bẹt AOB và tia OD, OE là phân giác góc BOD, OF là phân giác góc AOD. Kết luận: OB ⊥ OF
Lời giải tham khảo:
Đáp án đúng: A
Giả thiết: Cho góc bẹt AOB và tia OD, OE là phân giác góc BOD, OF là phân giác góc AOD.
Kết luận: OE ⊥ OF
Chọn đáp án A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong các câu sau, câu nào cho một định lý
- Chọn câu đúng về định lí:
- Giả thiết của định lý: “Hai góc cùng bù với một góc thứ ba thì bằng nhau”.
- Cho các định lý sau, có bao nhiêu định lý đúng 1. Hai góc đối đỉnh thì bằng nhau
- Em hãy chứng minh định lý là:
- Cho định lý: “Nếu hai đường thẳng song song cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau” (xem hình vẽ dưới đây). Giả thiết của định lý là:
- Chọn định lý: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông” (hình vẽ). Giả thiết, kết luận của định lý là:
- Phần giả thiết: \(c \cap a\; = \;\left\{ A \right\};\;c \cap b = \left\{ B \right\};\;\widehat {{A_1}}\; + \;\widehat {{B_2}}\; = \;{180^0}\) (tham khảo hình vẽ) là của định lý nào dưới đây:
- Cho biết khi chứng minh định lý, người ta cần:
- Phát biểu định lý đã cho sau bằng lời: