YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \(\left( {1 - \sqrt 2 } \right){x^4} - \left( {\sqrt 2  - \sqrt 3 } \right){x^2} + \sqrt 3  = 0\). Số các nghiệm dương của phương trình là

    • A. 2
    • B. 3
    • C. 4
    • D. 1

    Lời giải tham khảo:

    Đáp án đúng: A

    Đặt \({x^2} = t \ge 0\) ta được phương trình:

    \(\left( {1 - \sqrt 2 } \right){t^2} - \left( {\sqrt 2  - \sqrt 3 } \right)t + \sqrt 3  = 0\)

    Phương trình trên có \(ac = \left( {1 - \sqrt 2 } \right).\sqrt 3  < 0\) nên có hai nghiệm trái dấu \({t_1} < 0\left( L \right);{t_2} > 0\left( N \right)\)

    Thay lại cách đặt ta được \({x^2} = {t_2} \Rightarrow x =  \pm \sqrt {{t_2}} \)  hay phương trình đã cho có 2 nghiệm phân biệt.

    Chọn A

    ATNETWORK

Mã câu hỏi: 323321

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON