YOMEDIA
NONE
  • Câu hỏi:

    Các đường thẳng \(y =  - 5\left( {x + 2} \right);y = ax + 3;y = 3x + a\) đồng quy với giá trị của \(a\) là:

    • A. \( - 11\)       
    • B. \( - 18\)            
    • C. \( - 12\)   
    • D. \( - 10\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Xét các đường thẳng: \(\left( {{d_1}} \right):y =  - 5\left( {x + 2} \right);\left( {{d_2}} \right):y = ax + 3;\left( {{d_3}} \right):y = 3x + a\)

    Để ba đường thẳng trên cắt nhau thì \(a \ne \left\{ { - 5;3} \right\}\)

    Xét phương trình hoành độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_3}} \right)\) ta được:

    \(\begin{array}{l} - 5\left( {x + 2} \right) = 3x + a \Leftrightarrow  - 5x - 10 = 3x + a\\ \Leftrightarrow 8x =  - a - 10 \Rightarrow x = \dfrac{{ - a - 10}}{8} \Rightarrow y = 3.\dfrac{{ - a - 10}}{8} + a = \dfrac{{5a - 30}}{8}\end{array}\)

    Thay \(x = \dfrac{{ - a - 10}}{8};y = \dfrac{{5a - 30}}{8}\)  vào phương trình đường thẳng \(\left( {{d_2}} \right)\) ta được:

    \(\begin{array}{l}\dfrac{{5a - 30}}{8} = a.\dfrac{{ - a - 10}}{8} + 3\\ \Leftrightarrow 5a - 30 =  - {a^2} - 10a + 24\\ \Leftrightarrow {a^2} + 15a - 54 = 0\\ \Leftrightarrow \left[ \begin{array}{l}a =  - 18\left( {tm} \right)\\a = 3\left( {ktm} \right)\end{array} \right.\end{array}\)

    Vậy \(a =  - 18.\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 323284

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON