-
Câu hỏi:
Cho \(\overrightarrow a ,\,\overrightarrow b \) có \(\left| {\overrightarrow a } \right| = 4,\,\left| {\overrightarrow b } \right| = 5,\,\left( {\overrightarrow a ,\overrightarrow b } \right) = 60^\circ .\) Tính \(\left| {\overrightarrow a - 5\overrightarrow b } \right|.\)
- A. \(9.\)
- B. \(\sqrt {541} .\)
- C. \(\sqrt {59} .\)
- D. \(\sqrt {641} .\)
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \({\left| {\overrightarrow a - 5\overrightarrow b } \right|^2}\)\( = {\left( {\overrightarrow a - 5\overrightarrow b } \right)^2} \\= {\overrightarrow a ^2} - 10\overrightarrow a .\overrightarrow b + 25{\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} - 10.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \\+ 25{\left| {\overrightarrow b } \right|^2}\) \( = {4^2} - 10.4.5.\cos {60^0} + {25.5^2} = 541\)
\( \Rightarrow \left| {\overrightarrow a - 5\overrightarrow b } \right| = \sqrt {541} \).
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\sqrt 2 x - y = - 1\\3x - \sqrt 2 y = 2\end{array} \right.\) là
- Cho \(\overrightarrow u = \left( {2; - 2} \right),\,\,\overrightarrow v = \left( {1;8} \right)\). Khẳng định nào sau đây là đúng ?
- Hàm số nào trong 4 phương án liệt kê ở A, B, C, D có đồ thị như hình bên ?
- Trong các hàm số cho sau, hàm số bậc nhất là:
- Điều kiện của \(m\) để phương trình \(\left( {{m^2} - 5} \right)x - 1 = m - x\) có nghiệm duy nhất là :
- Tam giác \(ABC\) vuông ở \(A\) và có góc \(\widehat B = 40^\circ \). Hệ thức nào sau đây là đúng ?
- Cho \(3\) điểm \(A\left( {1;4} \right);\,\,B\left( {3;2} \right)\,;\,\,C\left( {5;4} \right)\). Chu vi tam giác \(ABC\) bằng bao nhiêu ?
- Hệ phương trình \(\left\{ \begin{array}{l}\left( {m - 1} \right)x - y = 2\\ - 2x + my = 1\end{array} \right.\) có vô nghiệm khi?
- Các đường thẳng \(y = - 5\left( {x + 2} \right);y = ax + 3;y = 3x + a\) đồng quy với giá trị của \(a\) là:
- Cho hàm số \(y = a{x^2} + bx + c\left( {a < 0} \right)\) có đồ thị \(\left( P \right)\). Khẳng định nào sau đây là khẳng định đúng?
- Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{x^2} - {y^2} = 4\\xy = 5\end{array} \right.\) là:
- Gọi \({x_1},{x_2}\) là 2 nghiệm của phương trình \({x^2} - 3x + 2 = 0\). Tổng \(x_1^2 + x_2^2\) bằng:
- Cho biết \(\sin \dfrac{\alpha }{3} = \dfrac{4}{5}\). Giá trị của \(P = 2{\sin ^2}\dfrac{\alpha }{3} + 5{\cos ^2}\dfrac{\alpha }{3}\) bằng bao nhiêu?
- Cho tam giác \(ABC\) có \(A\left( { - 4;0} \right)\), \(B\left( {4;6} \right)\), \(C\left( { - 1;4} \right)\). Trực tâm của tam giác \(ABC\) có tọa độ là:
- Hệ phương trình \(\left\{ \begin{array}{l}\dfrac{3}{x} + \dfrac{2}{y} = 12\\\dfrac{5}{x} - \dfrac{3}{y} = 1\end{array} \right.\) có nghiệm là:
- Hệ phương trình \(\left\{ \begin{array}{l}mx + y = m - 3\\4x + my = - 2\end{array} \right.\) có nghiệm duy nhất khi:
- Điểm nào sau đây thuộc đồ thị hàm số \(y = \left| {2{x^2} - 3} \right|\)
- Cho hàm số \(y = 2{x^2} - 4x + 3\) có đồ thị là Parabol \(\left( P \right)\). Mệnh đề nào sau đây sai?
- Cho tam giác \(ABC\) có \(A\left( {2;0} \right),\,\,B\left( {0;3} \right)\,,\,\,C\left( { - 3;1} \right)\). Đường thẳng \(d\) đi qua \(A\) và song song với \(BC\) có phương trình là
- Hàm số nào sau đây đồng biến trong khoảng \(\left( { - \infty ;0} \right)\) ?
- Vectơ nào dưới đây là một vectơ pháp tuyến của \(d:\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + t\end{array} \right.\)
- Cho phương trình \(\left( {1 - \sqrt 2 } \right){x^4} - \left( {\sqrt 2 - \sqrt 3 } \right){x^2} + \sqrt 3 = 0\). Số các nghiệm dương của phương trình là
- Trong hệ tọa độ \(Oxy\), cho ba điểm \(A\left( {1;1} \right)\,,\,\,B\left( {2; - 1} \right)\,,\,\,C\left( {4;3} \right)\). Tọa độ điểm \(D\) để \(ABDC\) là hình bình hành là :
- Tam giác \(ABC\) có \(AB = 8cm,\,\,AC = 20cm\) và có diện tích bằng \(64c{m^2}\). Giá trị \(\sin A\) bằng
- Cho phương trình \(\left| {x - 2} \right| = 2x - 1\,\,\,\left( 1 \right).\) Phương trình nào sau đây là phương trình hệ quả của phương trình \(\left( 1 \right).\)
- Cho tập hợp là \(A.\) Tìm mệnh đề SAI trong các mệnh đề sau ?
- Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\left( {m + 1} \right){x^2} - 2\left( {m + 1} \right)x + m = 0\) vô nghiệm.
- Cho hình vuông \(ABCD\) cạnh bằng \(a,\) tâm \(O.\) Tính \(\left| {\overrightarrow {AO} + \overrightarrow {AB} } \right|.\)
- Trong mặt phẳng tọa độ \(Oxy\) cho tam giác \(ABC\) có \(A\left( { - 4;7} \right),\,B\left( {a;b} \right),\,C\left( { - 1; - 3} \right).\) Tam giác \(ABC\) nhận \(G\left( { - 1;3} \right)\) làm trọng tâm. Tính \(T = 2a + b.\)
- Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = \left( {4 - {m^2}} \right)x + 2\) đồng biến trên \(\mathbb{R}.\) Tính số phần tử của \(S.\)
- Tìm tập xác định của hàm số \(y = \sqrt {x - 1} + \dfrac{1}{{x + 4}}.\)
- Cho \(\overrightarrow a ,\,\overrightarrow b \) có \(\left| {\overrightarrow a } \right| = 4,\,\left| {\overrightarrow b } \right| = 5,\,\left( {\overrightarrow a ,\overrightarrow b } \right) = 60^\circ .\) Tính \(\left| {\overrightarrow a - 5\overrightarrow b } \right|.\)
- Trong các phát biểu sau, phát biểu nào là mệnh đề ?
- Giả sử \({x_1}\) và \({x_2}\) là hai nghiệm của phương trình \(:{x^2} + 3x - 10 = 0.\) Tính giá trị \(P = \dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}}.\)
- Cho hàm số \(y = f\left( x \right) = 3{x^4} - 4{x^2} + 3.\) Trong các mệnh đề sau, mệnh đề nào đúng ?
- Cho tam giác đều \(ABC.\) Tính góc \(\left( {\overrightarrow {AB} ,\,\overrightarrow {BC} } \right).\)
- Điều kiện xác định của phương trình \(\sqrt {2x - 3} = x - 3\) là :
- Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^2} - 4x + 6 + m = 0\) có ít nhất \(1\) nghiệm dương.
- Hãy xác định hình vẽ dưới là đồ thị của hàm số nào ?
- Số nghiệm phương trình \(\left( {2 - \sqrt 5 } \right){x^4} + 5{x^2} + 7\left( {1 + \sqrt 2 } \right) = 0\)