-
Câu hỏi:
Cho định nghĩa bông tuyết von Koch như sau:
Bông tuyết đầu tiên \(K_1\) là một tam giác đều có cạnh bằng 1. Tiếp đó, chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài, ta được bông tuyết \(K_2\). Cứ tiếp tục như vậy, cho ta một dãy các bông tuyết \({K_1},{K_2},{K_3},...,{K_n}...\). Gọi \(C_n\) là chu vi của bông tuyết . Hãy tính \(\lim \,{C_n}\)
Lời giải tham khảo:
Mỗi công đoạn cho ta một hình mới có số cạnh gấp 4 lần số cạnh ban đầu nên bông tuyết \(K_n\) có số cạnh là \({3.4^{n - 1}}\).
Mỗi công đoạn lại làm độ dài mỗi cạnh giảm đi 3 lần nên bông tuyết \(K_n\) có độ dài cạnh là \(\frac{1}{{{3^{n - 1}}}}\).
Như vậy chu vi của bông tuyết \(K_n\) được tính bằng \({C_n} = {3.4^{n - 1}}.\frac{1}{{{3^{n - 1}}}} = 3.{\left( {\frac{4}{3}} \right)^{n - 1}}\)
Suy ra \(\lim \,{C_n} = \lim 3.{\left( {\frac{4}{3}} \right)^{n - 1}} = + \infty \)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tính các giới hạn sau:a) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x - {x^2}}}{{x - 1}}\)b) \(\mathop {\lim }\limits_{x \to {3^ + }} \fr
- Chứng minh rằng phương trình \({x^5} - 3{{\rm{x}}^4} + 5{\rm{x}} - 2 = 0\) có ít nhất ba nghiệm phân biệt.
- a) Tính đạo hàm của hàm số \(y = \frac{{3{\rm{x}} + 1}}{{1 - x}}\) b) Cho hàm số \(f(x) = {\cos ^2}2x\).
- Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}\) .Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x = – 2\).
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tâm O, \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 \) .
- Cho định nghĩa bông tuyết von Koch như sau:Bông tuyết đầu tiên \(K_1\) là một tam giác đều có cạnh bằng 1.