YOMEDIA
NONE
  • Câu hỏi:

    Cho \(a\), \(b\) là hai số thực dương thỏa mãn \({\log _5}\left( {\dfrac{{4a + 2b + 5}}{{a + b}}} \right) = a + 3b - 4\). Tìm giá trị nhỏ nhất của biểu thức \(T = {a^2} + {b^2}\)      

    • A. \(\dfrac{1}{2}\).   
    • B. \(1\).        
    • C. \(\dfrac{3}{2}\).  
    • D. \(\dfrac{5}{2}\).   

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: \({\log _5}\left( {\dfrac{{4a + 2b + 5}}{{a + b}}} \right) = a + 3b - 4 \Leftrightarrow {\log _5}\left( {\dfrac{{4a + 2b + 5}}{{5a + 5b}}} \right) = a + 3b - 5\)

    \( \Leftrightarrow {\log _5}\left( {4a + 2b + 5} \right) - {\log _5}\left( {5a + 5b} \right) = a + 3b - 5\)

    \( \Leftrightarrow {\log _5}\left( {4a + 2b + 5} \right) + 4a + 2b + 5 = {\log _5}\left( {5a + 5b} \right) + 5a + 5b\) (1)

    Xét hàm số \(f\left( t \right) = {\log _5}t + t,\,\,\left( {t > 0} \right)\) có \(f'\left( t \right) = \dfrac{1}{{t\ln 5}} + 1 > 0,\,\,\forall t > 0\).

    \( \Rightarrow \) Hàm số \(f\left( t \right)\) đồng biến trên \(\left( {0; + \infty } \right)\)

    \(\left( 1 \right) \Leftrightarrow f\left( {4a + 2b + 5} \right) = f\left( {5a + 5b} \right)\, \Leftrightarrow 4a + 2b + 5 = 5a + 5b \Leftrightarrow a + 3b = 5\)

    Với \(a,b > 0,\,\,a + 3b = 5\) ta có:

    \(T = {a^2} + {b^2} = \dfrac{1}{{10}}.\left( {{a^2} + {b^2}} \right)\left( {{1^2} + {3^2}} \right) \ge \dfrac{1}{{10}}.{\left( {a.1 + b.3} \right)^2} = \dfrac{1}{{10}}{.5^2} = \dfrac{5}{2}\)

    \( \Rightarrow {T_{\min }} = \dfrac{5}{2}\) khi và chỉ khi \(\left\{ \begin{array}{l}a,b > 0\\a + 3b = 5\\\dfrac{a}{1} = \dfrac{b}{3}\end{array} \right.\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b = \dfrac{3}{2}\end{array} \right.\).

    Chọn: D

    ATNETWORK

Mã câu hỏi: 361005

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON