YOMEDIA
NONE
  • Câu hỏi:

    Cho a, b, c là các số thực dương thỏa a^{{{\log }_3}7}} = 27,{b^{{{\log }_7}11}} = 49,{c^{{{\log }_{11}}25}} = \sqrt {11} . Tính giá trị biểu thức \(T = {a^{\log _3^27}} + {b^{\log _7^211}} + {c^{\log _{11}^225}}.\)

    • A. \(T = 76 + \sqrt {11}\)
    • B. T = 31141
    • C. T = 2017
    • D. T = 469

    Đáp án đúng: D

    \(T = {a^{\log _3^27}} + {b^{\log _7^211}} + {c^{\log _{11}^225}} = {\left( {{a^{{{\log }_3}7}}} \right)^{{{\log }_3}7}} + {\left( {{b^{{{\log }_7}11}}} \right)^{{{\log }_7}11}} + {\left( {{c^{{{\log }_{11}}25}}} \right)^{{{\log }_{11}}25}}\)

    \(= {\left( {27} \right)^{{{\log }_3}7}} + {\left( {49} \right)^{{{\log }_7}11}} + {\left( {\sqrt {11} } \right)^{{{\log }_{11}}25}} = {7^3} + {11^2} + \sqrt {25} = 469.\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON