YOMEDIA

Giải Toán 11 SGK nâng cao Chương 4 Luyện tập (trang 167)

 
NONE

Dưới đây là Hướng dẫn giải bài tập Toán 11 nâng cao Chương 4 Luyện tập (trang 167) được hoc247 biên soạn và tổng hợp, nội dung bám sát theo chương trình SGK Giải tích 11 nâng cao giúp các em học sinh nắm vững phương pháp giải bài tập và ôn tập kiến thức hiệu quả hơn. 

ATNETWORK

Bài 42 trang 167 SGK Toán 11 nâng cao

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} + \frac{1}{{{x^2}}}} \right)\)

b) \(\mathop {\lim }\limits_{x \to  - 2} \frac{{{x^3} + 8}}{{x + 2}}\)

c) \(\mathop {\lim }\limits_{x \to 9} \frac{{3 - \sqrt x }}{{9 - x}}\)

d) \(\mathop {\lim }\limits_{x \to 0} \frac{{2 - \sqrt {4 - x} }}{x}\)

e) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^4} - {x^3} + 11}}{{2x - 7}}\)

f) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^4} + 4} }}{{x + 4}}\)

Hướng dẫn giải:

Câu a:

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} + \frac{1}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{x + 1}}{{{x^2}}} =  + \infty \) (vì \(\mathop {\lim }\limits_{x \to 0} \left( {x + 1} \right) = 1 > 0,\mathop {\lim }\limits_{x \to 0} {x^2} = 0\) và \({x^2} > 0,\forall x \ne 0\))

Câu b:

\(\mathop {\lim }\limits_{x \to  - 2} \frac{{{x^3} + 8}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \frac{{\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \left( {{x^2} - 2x + 4} \right) = 12\)

Câu c:

\(\mathop {\lim }\limits_{x \to 9} \frac{{3 - \sqrt x }}{{9 - x}} = \mathop {\lim }\limits_{x \to 9} \frac{1}{{3 + \sqrt x }} = \frac{1}{6}\)

Câu d:

\(\mathop {\lim }\limits_{x \to 0} \frac{{2 - \sqrt {4 - x} }}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{4 - \left( {4 - x} \right)}}{{x\left( {2 + \sqrt {4 - x} } \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{2 + \sqrt {4 - x} }} = \frac{1}{4}\)

Câu e:

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^4} - {x^3} + 11}}{{2x - 7}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} - {x^2} + \frac{{11}}{x}}}{{2 - \frac{7}{x}}} =  + \infty \)

Câu f:

Với x < 0, ta có: \(\frac{{\sqrt {{x^4} + 4} }}{{x + 4}} = \frac{{{x^2}\sqrt {1 + \frac{4}{{{x^4}}}} }}{{x + 4}} = \frac{{x\sqrt {1 + \frac{4}{{{x^4}}}} }}{{1 + \frac{4}{x}}}\)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {1 + \frac{4}{{{x^4}}}}  =  - \infty ,\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \frac{4}{x}} \right) = 1 > 0\) nên \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^4} + 4} }}{{x + 4}} =  - \infty \)


Bài 43 trang 167 SGK Toán 11 nâng cao

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \sqrt 3 } \frac{{{x^3} + 3\sqrt 3 }}{{3 - {x^2}}}\)

b) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{{x^2} - 4x}}\)

c) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {x - 1} }}{{{x^2} - x}}\)

d) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + x + 1}  - 1}}{{3x}}\)

Hướng dẫn giải:

Câu a:

Ta có \(\frac{{{x^3} + 3\sqrt 3 }}{{3 - {x^2}}} = \frac{{\left( {x + \sqrt 3 } \right)\left( {{x^2} - x\sqrt 3  + 3} \right)}}{{\left( {x + \sqrt 3 } \right)\left( {\sqrt 3  - x} \right)}} = \frac{{{x^2} - x\sqrt 3  + 3}}{{\sqrt 3  - x}}\)

Do đó \(\mathop {\lim }\limits_{x \to  - \sqrt 3 } \frac{{{x^3} + 3\sqrt 3 }}{{3 - {x^2}}} =\mathop {\lim }\limits_{x \to  - \sqrt 3 } \frac{{{x^2} - x\sqrt 3  + 3}}{{\sqrt 3  - x}} = \frac{9}{{2\sqrt 3 }} = \frac{{3\sqrt 3 }}{2}\)

Câu b:

\(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{{x^2} - 4x}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x  - 2}}{{x\left( {x - 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{1}{{x\left( {\sqrt x  + 2} \right)}} = \frac{1}{{16}}\)

Câu c:

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {x - 1} }}{{{x^2} - x}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {x - 1} }}{{x\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x\sqrt {x - 1} }} =  + \infty \)

Câu d:

\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + x + 1}  - 1}}{{3x}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + x + 1 - 1}}{{3x\left( {\sqrt {{x^2} + x + 1}  + 1} \right)}} = \frac{1}{3}\mathop {\lim }\limits_{x \to 0} \frac{{x + 1}}{{\sqrt {{x^2} + x + 1}  + 1}} = \frac{1}{6}\)


Bài 44 trang 167 SGK Toán 11 nâng cao

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {\frac{{2{x^3} + x}}{{{x^5} - {x^2} + 3}}} \)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right| + \sqrt {{x^2} + x} }}{{x + 10}}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2{x^4} + {x^2} - 1} }}{{1 - 2x}}\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {2{x^2} + 1}  + x} \right)\)

Hướng dẫn giải:

Câu a:

Với x < 0, ta có:

\(\begin{array}{l}
x\sqrt {\frac{{2{x^3} + x}}{{{x^5} - {x^2} + 3}}}  =  - \left| x \right|\sqrt {\frac{{2{x^3} + x}}{{{x^5} - {x^2} + 3}}} \\
 =  - \sqrt {\frac{{{x^2}\left( {2{x^3} + x} \right)}}{{{x^5} - {x^2} + 3}}}  =  - \sqrt {\frac{{2 + \frac{1}{{{x^2}}}}}{{1 - \frac{1}{{{x^3}}} + \frac{1}{{{x^5}}}}}} 
\end{array}\)

Do đó \(\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {\frac{{2{x^3} + x}}{{{x^5} - {x^2} + 3}}}  =  - \sqrt 2 \)

Câu b:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right| + \sqrt {{x^2} + x} }}{{x + 10}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right| + \left| x \right|\sqrt {1 + \frac{1}{x}} }}{{x + 10}}\\
 = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x - x\sqrt {1 + \frac{1}{x}} }}{{x + 10}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 1 - \sqrt {1 + \frac{1}{x}} }}{{1 + \frac{{10}}{x}}} =  - 2
\end{array}\)

Câu c:

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2{x^4} + {x^2} - 1} }}{{1 - 2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}\sqrt {2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^4}}}} }}{{x\left( {\frac{1}{x} - 2} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } x.\frac{{\sqrt {2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^4}}}} }}{{\frac{1}{x} - 2}} =  - \infty \)

(vì \(\mathop {\lim }\limits_{x \to  + \infty } x =  + \infty ,\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^4}}}} }}{{\frac{1}{x} - 2}} =  - \frac{{\sqrt 2 }}{2} < 0\))

Câu d:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {2{x^2} + 1}  + x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2{x^2} + x - {x^2}}}{{\sqrt {2{x^2} + x}  - x}}\\
 = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {x + 1} \right)}}{{ - x\left( {\sqrt {2 + \frac{1}{x}}  + 1} \right)}} = \mathop {\lim }\limits_{x \to  - \infty }  - \frac{{x + 1}}{{\sqrt {2 + \frac{1}{x} + 1} }} =  + \infty 
\end{array}\)

(vì \(\mathop {\lim }\limits_{x \to  - \infty } \left( { - x - 1} \right) =  + \infty \))


Bài 45 trang 167 SGK Toán 11 nâng cao

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {{x^2} + x}  - \sqrt x }}{{{x^2}}}\)

b) \(\mathop {\lim }\limits_{x \to {1^ - }} x.\frac{{\sqrt {1 - x} }}{{2\sqrt {1 - x}  + 1 - x}}\)

c) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{3 - x}}{{\sqrt {27 - {x^3}} }}\)

d) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{\sqrt {{x^3} - 8} }}{{{x^2} - 2x}}\)

Hướng dẫn giải:

Câu a:

\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {{x^2} + x}  - \sqrt x }}{{{x^2}}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + x}  + \sqrt x } \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt {{x^2} + x}  + \sqrt x }} =  + \infty \)

Câu b:

\(\mathop {\lim }\limits_{x \to {1^ - }} x.\frac{{\sqrt {1 - x} }}{{2\sqrt {1 - x}  + 1 - x}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{x}{{2 + \sqrt {1 - x} }} = \frac{1}{2}\)

Câu c:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {3^ - }} \frac{{3 - x}}{{\sqrt {27 - {x^3}} }} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{{{\left( {\sqrt {3 - x} } \right)}^2}}}{{\sqrt {\left( {3 - x} \right)\left( {{x^2} + 3x + 9} \right)} }}\\
 = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{\sqrt {3 - x} }}{{\sqrt {{x^2} + 3x + 9} }} = 0
\end{array}\)

Câu d:

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{\sqrt {{x^3} - 8} }}{{{x^2} - 2x}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\sqrt {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)} }}{{x\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{x}\sqrt {\frac{{{x^2} + 2x + 4}}{{x - 2}}}  =  + \infty \)

(vì \(\mathop {\lim }\limits_{x \to {2^ + }} \sqrt {{x^2} + 2x + 4}  = 2\sqrt 3 ,\mathop {\lim }\limits_{x \to {2^ + }} x\sqrt {x - 2}  = 0\) và \(x\sqrt {x - 2}  > 0,\forall x > 2\)).

 

Trên đây là nội dung chi tiết Giải bài tập nâng cao Toán 11 Chương 4 Luyện tập (trang 167) với hướng dẫn giải chi tiết, rõ ràng, trình bày khoa học. Hoc247 hy vọng đây sẽ là tài liệu hữu ích giúp các bạn học sinh lớp 11 học tập thật tốt. 

 

NONE

ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON