YOMEDIA

Giải Toán 11 SGK nâng cao Chương 4 Bài 1 Dãy số có giới hạn 0

 
NONE

Mời các em học sinh lớp 11 cùng tham khảo tài liệu Hướng dẫn giải chi tiết bài tập SGK Toán 11 nâng cao Chương 4 Bài 1 Dãy số có giới hạn 0 do HỌC247 tổng hợp và biên soạn dưới đây. Nội dung tài liệu bao gồm phương pháp giải và đáp án gợi ý được trình bày một cách khoa học và dễ hiểu, giúp các em dễ dàng vận dụng, nâng cao kỹ năng làm bài. Chúc các em học tốt!

ATNETWORK

Bài 1 trang 130 SGK Toán 11 nâng cao

Chứng minh rằng các dãy số với số hạng tổng quát sau đây có giới hạn 0:

a) \(\frac{{{{\left( { - 1} \right)}^n}}}{{n + 5}}\)

b) \(\frac{{\sin n}}{{n + 5}}\)

c) \(\frac{{\cos 2n}}{{\sqrt n  + 1}}\)

Hướng dẫn giải:

Câu a:

Ta có \(\left| {\frac{{{{\left( { - 1} \right)}^n}}}{{n + 5}}} \right| = \frac{1}{{n + 5}} < \frac{1}{n}\) và \(\lim \frac{1}{n} = 0 \Rightarrow \lim \frac{{{{\left( { - 1} \right)}^n}}}{{n + 5}} = 0\)

Câu b:

Ta có \(\left| {\frac{{\sin n}}{{n + 5}}} \right| \le \frac{1}{{n + 5}} < \frac{1}{n}\) và \(\lim \frac{1}{n} = 0 \Rightarrow \lim \frac{{\sin n}}{{n + 5}} = 0\)

Câu c:

Ta có \(\left| {\frac{{\cos 2n}}{{\sqrt n  + 1}}} \right| \le \frac{1}{{\sqrt n  + 1}} < \frac{1}{{\sqrt n }}\) và \(\lim \frac{1}{{\sqrt n }} = 0 \Rightarrow \lim \frac{{\cos 2n}}{{\sqrt n  + 1}} = 0\)


Bài 2 trang 130 SGK Toán 11 nâng cao

Chứng minh rằng hai dãy số (un) và (vn) với

\({u_n} = \frac{1}{{n\left( {n + 1} \right)}},\,\,\,{v_n} = \frac{{{{\left( { - 1} \right)}^n}\cos n}}{{{n^2} + 1}}\)

Có giới hạn 0.

Hướng dẫn giải:

Ta có \(\left| {{u_n}} \right| = \frac{1}{{n\left( {n + 1} \right)}} < \frac{1}{n}\) và \(\lim \frac{1}{n} = 0 \Rightarrow \lim {u_n} = 0\)

\(\left| {\,{v_n}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^n}\cos n}}{{{n^2} + 1}}} \right| = \frac{{\left| {\cos n} \right|}}{{{n^2} + 1}} \le \frac{1}{{{n^2} + 1}} < \frac{1}{{{n^2}}}\) và \(\lim \frac{1}{{{n^2}}} = 0 \Rightarrow \lim {v_n} = 0\)


Bài 3 trang 130 SGK Toán 11 nâng cao

Chứng minh rằng các dãy số (un) sau đây có giới hạn 0:

a) \({u_n} = {\left( {0,99} \right)^n}\)

b) \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{2^n} + 1}}\)

c) \({u_n} =  - \frac{{\sin \frac{{n\pi }}{5}}}{{{{\left( {1,01} \right)}^n}}}\)

Hướng dẫn giải:

Câu a:

Ta có \(\left| {0,99} \right| < 1 \Rightarrow \lim {u_n} = \lim {\left( {0,99} \right)^n} = 0\)

Câu b:

Ta có \(\left| {{u_n}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^n}}}{{{2^n} + 1}}} \right| = \frac{1}{{{2^n} + 1}} < {\left( {\frac{1}{2}} \right)^n}\) và \(\lim {\left( {\frac{1}{2}} \right)^n} = 0 \Rightarrow \lim {u_n} = 0\)

Câu c:

Ta có \(\left| {{u_n}} \right| = \left| { - \frac{{\sin \frac{{n\pi }}{5}}}{{{{\left( {1,01} \right)}^n}}}} \right| = \frac{{\left| {\sin \frac{{n\pi }}{5}} \right|}}{{{{\left( {1,01} \right)}^n}}} \le {\left( {\frac{1}{{1,01}}} \right)^n},\lim {\left( {\frac{1}{{1,01}}} \right)^n} = 0 \Rightarrow \lim {u_n} = 0\)


Bài 4 trang 130 SGK Toán 11 nâng cao

Cho dãy số (un) với \({u_n} = \frac{n}{{{3^n}}}\)

a. Chứng minh rằng \(\frac{{{u_{n + 1}}}}{{{u_n}}} \le \frac{2}{3}\) với mọi n.

b. Bằng phương pháp qui nạp, chứng minh rằng \(0 < {u_n} \le {\left( {\frac{2}{3}} \right)^n}\) với mọi n.

c. Chứng minh rằng dãy số (un) có giới hạn 0.

Hướng dẫn giải:

Câu a:

Ta có \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{n + 1}}{{{3^{n + 1}}}}:\frac{n}{{{3^n}}} = \frac{1}{3}.\frac{{n + 1}}{n} = \frac{1}{3}.\left( {1 + \frac{1}{n}} \right) \le \frac{2}{3},\forall n \ge 1\)

Câu b:

Rõ ràng \({u_n} > 0,\forall n \ge 1\).

Ta chứng minh \({u_n} \le {\left( {\frac{2}{3}} \right)^n}\,\,\,\,\left( 1 \right)\)

  • Với n = 1 ta có \({u_1} = \frac{1}{3} \le \frac{2}{3}\)

Vậy (1) đúng với n = 1

  • Giả sử (1) đúng với n = k, tức là ta có \({u_k} \le {\left( {\frac{2}{3}} \right)^k}\)

Khi đó \({u_{k + 1}} \le \frac{2}{3}{u_k}\) (theo câu a)

\( \Rightarrow {u_{k + 1}} \le \frac{2}{3}.{\left( {\frac{2}{3}} \right)^k} = {\left( {\frac{2}{3}} \right)^{k + 1}}\)

Vậy (1) đúng với n = k+1 nên (1) đúng với mọi n.

Câu c:

Ta có \(0 < {u_n} \le {\left( {\frac{2}{3}} \right)^n} \Rightarrow \left| {{u_n}} \right| \le {\left( {\frac{2}{3}} \right)^n}\)

Mà \(\lim {\left( {\frac{2}{3}} \right)^n} = 0 \Rightarrow \lim \left| {{u_n}} \right| = 0 \Rightarrow \lim {u_n} = 0\)

 

Trên đây là nội dung chi tiết Giải bài tập nâng cao Toán 11 Chương 4 Bài 1 Dãy số có giới hạn 0 với hướng dẫn giải chi tiết, rõ ràng, trình bày khoa học. Hoc247 hy vọng đây sẽ là tài liệu hữu ích giúp các bạn học sinh lớp 11 học tập thật tốt. 

 

NONE

ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON