YOMEDIA
NONE

Bài tập 43 trang 94 SBT Toán 8 Tập 2

Giải bài 43 tr 94 sách BT Toán lớp 8 Tập 2

Chứng minh rằng, nếu hai tam giác \(ABC\) và \(A’B’C’\) đồng dạng với nhau thì:

a) Tỉ số của hai đường phân giác tương ứng bằng tỉ số đồng dạng.

b) Tỉ số của hai trung tuyến tương ứng bằng tỉ số đồng dạng.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.

Lời giải chi tiết

a)

Gọi \(AD\) là phân giác của góc \(A\) của \(∆ ABC\), \(A'D'\) là phân giác của góc \(A'\) của \(∆ A'B'C'\).

Giả sử \(∆ A’B’C’ \backsim ∆ ABC\) theo tỉ số \(k\) ta có:

\(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\) và \(\displaystyle {{A'B'} \over {AB}} = k\)

Mà \(\displaystyle \widehat {BAD} = {1 \over 2}\widehat A\) (vì \(AD\) là phân giác góc \(A\)) và \(\displaystyle \widehat {B'A'D'} = {1 \over 2}\widehat A\)  (vì \(A'D'\) là tia phân giác góc \(A'\)).

\( \Rightarrow \widehat {BAD} = \widehat {B'A'D'}\)

Xét \(∆ ABD\) và \(∆ A’B’D’\) có:

+) \(\widehat B = \widehat {B'}\) (chứng minh trên )

+) \(\widehat {BAD} = \widehat {B'A'D'}\) (chứng minh trên )

\( \Rightarrow ∆ ABD  \backsim  ∆ A’B’D’ \) (g.g)

\( \displaystyle \Rightarrow {{A'D'} \over {AD}} = {{A'B'} \over {AB}} = k\).

b) Gọi \(AM\) là đường trung tuyến ứng với cạnh \(BC\) của \(∆ ABC\), \(A'M'\) là đường trung tuyến ứng với cạnh \(B'C'\) của \(∆ A’B’C’\).

Giả sử \(∆ A’B’C’ \backsim ∆ ABC\) theo tỉ số \(k\) ta có: \(\displaystyle {{A'B'} \over {AB}}={{B'C'} \over {BC}} = k\)

Mà \(\displaystyle B'M' = {1 \over 2}B'C'\) (vì \(M\) là trung điểm \(BC\)) và \(\displaystyle BM = {1 \over 2}BC\) (vì \(M'\) là trung điểm \(B'C'\)) nên \(\displaystyle {{B'M'} \over {BM}}=  \dfrac{{\dfrac{1}{2}B'C'}}{{\dfrac{1}{2}BC}} = \dfrac{{B'C'}}{{BC}} = k\)

Xét \(∆ ABM\) và \(∆ A’B’M’\) có:

+) \(\displaystyle {{A'B'} \over {AB}} = {{B'M'} \over {BM}} = k\)

+) \(\displaystyle \widehat B = \widehat {B'}\) (chứng minh trên )

\( \Rightarrow ∆ ABM \backsim ∆ A’B’M’\) (c.g.c)

\( \displaystyle \Rightarrow {{A'M'} \over {AM}} = {{A'B'} \over {AB}} = k\).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 43 trang 94 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON