YOMEDIA
NONE

Chứng minh tam giác ABO đồng dạng với DCO biết tứ giác ABCD có A=B=90 độ

Tứ giác ABCD Có góc A = góc B=90 độ gọi O là giao điểm của AC và BD biết góc BAO = góc BDC chứng minh a) ∆ABO~ ∆DCO. b) BC. DO=CO.AD

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    a)

    Xét tam giác $ABO$ và $DCO$ có:

    \(\widehat{BAO}=\widehat{BDC}=\widehat{CDO}\) (giả thiết)

    \(\widehat{AOB}=\widehat{DOC}\) (hai góc đối đỉnh)

    \(\Rightarrow \triangle ABO\sim \triangle DCO(g.g)\) (đpcm)

    \(\Rightarrow \frac{AO}{DO}=\frac{BO}{CO}(1)\)

    b)

    \(\widehat{A}+\widehat{B}=90^0+90^0=180^0\) nên 2 góc này bù nhau, do đó \(AD\parallel BC\)

    \(\Rightarrow \widehat{ADO}=\widehat{CBO}\) (so le trong)

    Xét tam giác $ADO$ và $CBO$ có:

    \(\widehat{ADO}=\widehat{CBO}\) (cmt)

    \(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)

    \(\Rightarrow \triangle ADO\sim \triangle CBO(g.g)\)

    \(\Rightarrow \frac{AO}{DO}=\frac{CO}{BO}(2)\)

    Từ \((1)(2)\Rightarrow BO=CO\)

    Mặt khác từ tam giác đồng dạng trên ta cũng suy ra:

    \( \frac{AD}{DO}=\frac{CB}{BO}\Rightarrow BC.DO=AD.BO\). Mà \(BO=CO\) nên \(BC.DO=AD.CO\) (đpcm)

      bởi nguyễn hiền 25/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON