Giải bài 28 trang 90 SBT Toán 8 Tập 2
Hình thang ABCD (AB // CD) có CD = 2AB. Gọi E là trung điểm của DC. Chứng minh rằng ba tam giác ADE, ABE và BEC đông dạng với nhau từng đôi một. (Chú ý viết các đỉnh của hai tam giác đồng dạng theo thứ tự tương ứng với nhau).
Hướng dẫn giải chi tiết
Hướng dẫn giải
Sử dụng:
- Tính chất: Hai tam giác bằng nhau thì đồng dạng với nhau.
- Nhận xét: Nếu một hình thang có hai cạnh đáy bằng nhau thì hai cạnh bên song song và bằng nhau.
Lời giải chi tiết
Vì \(CD = 2AB\) (gt) nên \(\displaystyle AB = {1 \over 2}CD\).
Vì \(E\) là trung điểm của \(CD\) nên \(\displaystyle DE = EC = {1 \over 2}CD\)
\( \Rightarrow AB = DE = EC\).
Xét tứ giác \(ABCE \) có \(AB//EC\) và \(AB = EC\) nên \(ABCE\) là hình bình hành.
\( \Rightarrow AE//BC\) (tính chất hình bình hành).
Vì \(AB//DC\) nên \(\widehat {ABE} = \widehat {BEC}\) (cặp góc so le trong).
Vì \(AE//BC\) nên \(\widehat {AEB} = \widehat {EBC}\) (cặp góc so le trong).
Xét \(∆ AEB\) và \(∆ CBE\) có:
\(\widehat {ABE} = \widehat {BEC}\) (cmt)
\(\widehat {AEB} = \widehat {EBC}\) (cmt)
\(BE \) cạnh chung
\(⇒ ∆ AEB = ∆ CBE\; (g.c.g)\) (1)
Hình thang \(ABED\) có đáy \(AB = DE\) nên hai cạnh bên \(AD\) và \(BE\) song song với nhau.
Vì \(AB//CD\) nên \(\widehat {BAE} = \widehat {AED}\) (cặp góc so le trong).
Vì \(AD//BE\) nên \(\widehat {AEB} = \widehat {EAD}\) (cặp góc so le trong).
Xét \(∆ AEB\) và \(∆ EAD\) có:
\(\widehat {BAE} = \widehat {AED}\) (cmt)
\(\widehat {AEB} = \widehat {EAD}\) (cmt)
\(AE\) cạnh chung
\(⇒ ∆ AEB = ∆ EAD \;(g.c.g)\) (2)
Từ (1) và (2) suy ra: \(∆ AEB = ∆ EAD = ∆ CBE\).
Do đó ba tam giác \(ADE, ABE\) và \(BEC \) đồng dạng với nhau từng đôi một.
-- Mod Toán 8 HỌC247
-
Tính các cạnh của tam giác biết tỉ số chu vi bằng 11/13
bởi hành thư 31/05/2019
1. Chu vi của một tam giác bằng 11/13 chu vi của một tam giác khác đồng dạng với nó. Hiệu hai cạnh tương ứng của hai tam giác bằng 1cm. Tính các cạnh đó.
Theo dõi (0) 1 Trả lời -
Cho tam giác ABC cân tại A, trên BC lấy điểm M. Vẽ ME, MF lần lượt vuông góc với AC, AB. Kẻ đường cao CH. Chứng minh: a) Tam giác BFM đồng dạng với tam giác CEM. b) Tam giác BHC đồng dạng với tam giác CEM. c) ME + MF không thay đổi khi M di động trên BC.
Theo dõi (0) 1 Trả lời -
Bài 28 trang 90 sách bài tập toán 8 tập 2
bởi thanh hằng 29/09/2018
Bài 28 (Sách bài tập - tập 2 - trang 90)Hình thang ABCD (AB//CD) có CD = 2AB. Gọi E là trung điểm của DC (h.21).
Chứng minh rằng 3 tam giác ADE, ABE và BEC đồng dạng với nhau từng đôi một. (Chú ý viết các đỉnh của hai tam giác đồng dạng theo thứ tự tương ứng với nhau)
Theo dõi (0) 1 Trả lời -
Bài 26 trang 89 sách bài tập toán 8 tập 2
bởi Nguyễn Lê Tín 31/05/2019
Bài 26 (Sách bài tập - tập 2 - trang 89)Tam giác ABC có AB = 3cm, BC = 5cm và CA = 7cm. Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm.
Tính các cạnh còn lại của tam giác A'B'C' ?
Theo dõi (0) 1 Trả lời -
Bài 25 trang 89 sách bài tập toán 8 tập 2
bởi Sasu ka 31/05/2019
Bài 25 (Sách bài tập - tập 2 - trang 89)Cho hai tam giác A'B'C' và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số chu vi của hai tam giác cũng bằng k ?
Theo dõi (0) 1 Trả lời