Giải bài 92 trang 67 SBT Toán 7 Cánh diều tập 1
Tìm giá trị nhỏ nhất của mỗi biểu thức sau:
a) \(A = \left| {x - 1} \right| + 21\);
b) \(B = \sqrt x + {x^2} - 22\) với x ≥ 0.
Hướng dẫn giải chi tiết
Phương pháp giải:
a) Giá trị nhỏ nhất của biểu thức phụ thuộc vào biểu thức có dấu giá trị tuyệt đối.
b) Giá trị nhỏ nhất của biểu thức phụ thuộc vào biểu thức có dấu căn.
Ta tìm giá trị nhỏ nhất của mỗi thừa số có trong biểu thức để tìm ra giá trị nhỏ nhất của mỗi biểu thức.
Lời giải chi tiết:
a) \(A = \left| {x - 1} \right| + 21\);
Ta có: \(\left| {x - 1} \right| \ge 0 \to \left| {x - 1} \right| + 21 \ge 21\) với mọi số thực x.
Vậy giá trị nhỏ nhất của A là 21.
Dấu “=” xảy ra khi và chỉ khi \(\left| {x - 1} \right| = 0 \to x = 1\).
b) \(B = \sqrt x + {x^2} - 22\) với x ≥ 0.
Ta có: \(\begin{array}{l}\left\{ \begin{array}{l}\sqrt x \ge 0\\{x^2} \ge 0\end{array} \right.{\rm{ }}\left( {\forall x \in \mathbb{R}} \right) \to \sqrt x + {x^2} \ge 0\\ \Rightarrow \sqrt x + {x^2} - 22 \ge - 22\end{array}\)
Vậy giá trị nhỏ nhất của B là – 22.
Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}\sqrt x = 0\\{x^2} = 0\end{array} \right. \Leftrightarrow x = 0\).
-- Mod Toán 7 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.