YOMEDIA
NONE

Giải bài 6.24 trang 18 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Giải bài 6.24 trang 18 SGK Toán 7 Kết nối tri thức tập 2

Cho biết y tỉ lệ nghịch với x theo hệ số tỉ lệ a, x tỉ lệ nghịch với z theo hệ số tỉ lệ b. Hỏi y tỉ lệ thuận hay tỉ lệ nghịch với z và hệ số tỉ lệ là bao nhiêu?

ATNETWORK

Hướng dẫn giải chi tiết Giải bài 6.24

Phương pháp giải

+ Sử dụng định nghĩa 2 đại lượng tỉ lệ thuận và tỉ lệ nghịch:

Nếu y = a.x (a là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ a.

Nếu \(y = \dfrac{a}{x}\)(a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a

+ Biểu diễn đại lượng y theo z.

Nếu y = k. z ( k là hằng số) thì y và z là hai đại lượng tỉ lệ thuận.

Nếu \(y = \dfrac{k}{z}\) ( k là hằng số) thì y và z là hai đại lượng tỉ lệ nghịch.

Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\)

Vì x tỉ lệ nghịch với z theo hệ số tỉ lệ b nên x = \(\dfrac{b}{z}\)

Do đó, \(y = \dfrac{a}{x} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\) ( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)

Vậy y có tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)

Lời giải chi tiết

Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\)

Vì x tỉ lệ nghịch với z theo hệ số tỉ lệ b nên x = \(\dfrac{b}{z}\)

Do đó, \(y = \dfrac{a}{x} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\) ( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)

Vậy y có tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\).

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6.24 trang 18 SGK Toán 7 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON