Giải bài 4 trang 92 SGK Toán 7 Cánh diều tập 2
Cho Hình 67 có \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,DH = CK,\widehat {DAB} = \widehat {CBA}\). Chứng minh AD = BC.
Hướng dẫn giải chi tiết Bài 4
Phương pháp giải
Chứng minh tam giác AHD bằng tam giác BKC.
Lời giải chi tiết
Ta có: \(\widehat {DAB} = \widehat {CBA} \to \widehat {HAD} = \widehat {KBC}\)(Hai góc này là hai góc bù của góc DAB và CBA).
Mà tổng ba góc trong tam giác bằng 180° và \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\widehat {HAD} = \widehat {KBC}\) nên \(\widehat {ADH} = \widehat {BCK}\).
Xét hai tam giác AHD và tam giác BKC có:
\(\widehat {AHD} = \widehat {BKC}\);
HD = KC;
\(\widehat {ADH} = \widehat {BCK}\).
Vậy \(\Delta AHD = \Delta BKC\)(g.c.g) nên AD = BC ( 2 cạnh tương ứng)
-- Mod Toán 7 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 2 trang 91 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 3 trang 92 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 5 trang 92 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 6 trang 92 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 37 trang 81 SBT Toán 7 Cánh diều tập 2 - CD
Giải bài 38 trang 81 SBT Toán 7 Cánh diều tập 2 - CD
Giải bài 39 trang 81 SBT Toán 7 Cánh diều tập 2 - CD
Giải bài 40 trang 81 SBT Toán 7 Cánh diều tập 2 - CD