Giải bài 3 trang 92 SGK Toán 7 Cánh diều tập 2
Cho Hình 66 có \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\). Chứng minh MN = QP, MP = QN.
Hướng dẫn giải chi tiết Bài 3
Phương pháp giải
Chứng minh hai tam giác MNQ bằng tam giác QPM.
Lời giải chi tiết
Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\)nên \(\widehat {PQM} = \widehat {NPQ}\).
Xét hai tam giác MNQ và QPM có:
\(\widehat {PMQ} = \widehat {NQM}\)
MQ chung
\(\widehat {PQM} = \widehat {NPQ}\)
Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)
-- Mod Toán 7 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 1 trang 91 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 2 trang 91 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 4 trang 92 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 5 trang 92 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 6 trang 92 SGK Toán 7 Cánh diều tập 2 - CD
Giải bài 37 trang 81 SBT Toán 7 Cánh diều tập 2 - CD
Giải bài 38 trang 81 SBT Toán 7 Cánh diều tập 2 - CD
Giải bài 39 trang 81 SBT Toán 7 Cánh diều tập 2 - CD
Giải bài 40 trang 81 SBT Toán 7 Cánh diều tập 2 - CD