YOMEDIA
NONE

Giải bài 10 trang 13 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST

Giải bài 10 trang 13 SBT Toán 7 Chân trời sáng tạo tập 2

Một tam giác có ba cạnh tỉ lệ với 5; 12; 13 và có chu vi là 120 cm. Tính độ dài các cạnh của tam giác đó.

ATNETWORK

Hướng dẫn giải chi tiết Bài 10

Phương pháp giải

Bước 1: Lập được tỉ lệ thức từ dữ kiện đề bài.

Bước 2: Áp dụng tính chất của dãy tỉ số bằng nhau.

\(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}} = \frac{{a - c + e}}{{b - d + f}}\) (với \(b + d + f \ne 0,\,b - d + f \ne 0\)).

Lời giải chi tiết

Gọi độ dài các cạnh của tam giác đó lần lượt là x, y, z (\(x,y,z > 0\))

Theo bài ta có: Độ dài ba cạnh tỉ lệ với 5; 12; 13 do đó \(\frac{x}{5} = \frac{y}{{12}} = \frac{z}{{13}}\)

Chu vi tam giác đó là 120 cm, do đó \(x + y + z = 120\) (cm).

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{x}{5} = \frac{y}{{12}} = \frac{z}{{13}} = \frac{{x + y + z}}{{5 + 12 + 13}} = \frac{{120}}{{25}} = 4,8\).

Suy ra \(\frac{x}{5} = 4,8 \Rightarrow x = 24\)(cm) ; \(\frac{y}{{12}} = 4,8 \Rightarrow y = 57,6\)(cm); \(\frac{z}{{13}} = 4,8 \Rightarrow z = 62,4\)(cm)

Vậy độ dài các cạnh của tam giác đó lượt là 24 cm; 57,6 cm; 62,4 cm

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 10 trang 13 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON